• Title/Summary/Keyword: Building energy code

Search Result 125, Processing Time 0.028 seconds

A Study on the Methodology of Building Energy Consumption Estimation and Energy Independence Rate for Zero Energy City Planning Phase (제로에너지시티 계획을 위한 건물에너지 수요 예측 방법론 개발 및 자립률 산정에 대한 연구)

  • Bae, Eun-ji;Yoon, Yong Sang
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.5
    • /
    • pp.29-40
    • /
    • 2019
  • In response to the rapid climate change, in order to save energy in the field of buildings, the country is planning not only zero energy buildings but also zero energy cities. In the Urban Development Project, the Energy Use Plan Report is prepared and submitted by predicting the amount of energy demand at the planning stage. However, due to the activation of zero-energy buildings and the increase in the supply of new and renewable energy facilities, the energy consumption behavior of buildings in the city is changing from the previous ones. In this study, to estimate urban energy demand of Zero Energy City, building energy demand forecasts based on "Passive plans for use of energy based primary energy consumption", "Actual building energy usage data from Korea Appraisal Board" and "data from Certification of Building Energy Efficiency Rating" as well as demand forecast according to existing "Consultation about Energy Use Plan Code" were calculated and then applied to Multifunctional Administrative City 5-1 zone to compare urban total energy demand forecasts.

Aerodynamic loading of a typical low-rise building for an experimental stationary and non-Gaussian impinging jet

  • Jubayer, Chowdhury;Romanic, Djordje;Hangan, Horia
    • Wind and Structures
    • /
    • v.28 no.5
    • /
    • pp.315-329
    • /
    • 2019
  • Non-synoptic winds have distinctive statistical properties compared to synoptic winds and can produce different wind loads on buildings and structures. The current study uses the new capabilities of the WindEEE Dome at Western University to replicate a stationary non-Gaussian wind event recorded at the Port of La Spezia in Italy. These stationary non-Gaussian wind events are also known as intermediate wind events as they differ from non-stationary non-Gaussian events (e.g., downbursts) as well as stationary Gaussian events (e.g., atmospheric boundary layer (ABL) flows). In the present study, the wind loads on a typical low-rise building are investigated for an intermediate wind event reproduced using a continuous radial impinging jet (IJ) at the WindEEE Dome. For the same building model, differences in wind loads between ABL and IJ are also examined. Wind loads on different surface zones on the building, as defined in the ASCE code for design loads, are also calculated and compared with the code.

A Study on the Optimum Design of a Facade with Shading-type BIPV in Office Building (차양형 BIPV가 적용된 사무소 건물의 외피 최적 설계에 관한 연구)

  • Park, Se-Hyeon;Kang, Jun-Gu;Bang, Ah-Young;Kim, Jun-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.2
    • /
    • pp.93-101
    • /
    • 2015
  • Zero energy building is a self sufficient building that minimizes energy consumption through passive elements such as insulation, high performance window system and installing of high efficiency HVAC system and uses renewable energy sources. The Korea Government has been strengthening the building energy efficiency standard and code for zero energy building. The building energy performance is determined by the performance of building envelope. Therefore it is important to optimize facade design such as insulation, window properties and shading, that affect the heating and cooling loads. In particular, shading devices are necessary to reduce the cooling load in summer season. Meanwhile, BIPV shading system functions as a renewable energy technology applied in solar control facade system to reduce cooling load and produce electricity simultaneously. Therefore, when installing the BIPV shading system, the length of shadings and angle that affect the electricity production must be considered. This study focused on the facade design applied with BIPV shading system for maximizing energy saving of the selected standard building. The impact of changing insulation on roof and walls, window properties and length of BIPV shading device on energy performance of the building were investigated. In conclusion, energy consumption and electricity production were analyzed based on building energy simulations using energyplus 8.1 building simulation program and jEPlus+EA optimization tool.

Air Leakage Analysis of Research Reactor HANARO Building in Typhoon Condition for the Nuclear Emergency Preparedness

  • Lee, Goanyup;Lee, Haecho;Kim, Bongseok;Kim, Jongsoo;Choi, Pyungkyu
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.4
    • /
    • pp.354-358
    • /
    • 2016
  • Background: To find out the leak characteristic of research reactor 'HANARO' building in a typhoon condition Materials and Methods: MELCOR code which normally is used to simulate severe accident behavior in a nuclear power plant was used to simulate the leak rate of air and fission products from reactor hall after the shutdown of the ventilation system of HANARO reactor building. For the simulation, HANARO building was designed by MELCOR code and typhoon condition passed through Daejeon in 2012 was applied. Results and Discussion: It was found that the leak rate is $0.1%{\cdot}day^{-1}$ of air, $0.004%{\cdot}day^{-1}$ of noble gas and $3.7{\times}10^{-5}%{\cdot}day^{-1}$ of aerosol during typhoon passing. The air leak rate of $0.1%{\cdot}day^{-1}$ can be converted into $1.36m^3{\cdot}hr^{-1}$, but the design leak rate in HANARO safety analysis report was considered as $600m^3{\cdot}hr^{-1}$ under the condition of $20m{\cdot}sec^{-1}$ wind speed outside of the building by typhoon. Conclusion: Most of fission products during the maximum hypothesis accident at HANARO reactor will be contained in the reactor hall, so the direct radiation by remained fission products in the reactor hall will be the most important factor in designing emergency preparedness for HANARO reactor.

Evaluation on the Cooling Performance of Geothermal-energy Using Heat Pump System in Mixed-use Residential Building (주상복합 건축물에 적용된 지열이용 히트펌프 시스템의 냉방성능 평가)

  • Kim, Yong-Shik;Kim, Jung-Heon;Hwang, Kwang-Il
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.4
    • /
    • pp.9-16
    • /
    • 2006
  • Geothermal-energy has been getting popular as a natural energy source for green buildings these days. Public building with gross area more than $3000m^2$, planned after March, 2005, should spend about 5% of total building cost for equipment run by natural energy source (e.g. geothermal, solar heat, solar power, etc) according to renewable energy promotion law in Korea. As a result geothermal-energy using heat pump system is emerging as a effective alternative for realistic and economic plan although design guidelines and construction code for the system is in progress and technical data is far from sufficient. The quantitative analysis on the performance of geothermal-energy using heat pump system is insufficient for appropriate design of it. In this paper, cooling performance of geothermal-energy using heat pump system of residential and retail etc. mixed-use building has been analyzed on the basis of temperature comparison between inlet and outlet of heat exchangers of the operating system. Additionally, dry-bulb temperature and relative humidity have been measured and analyzed together as an index of indoor thermal environment.

Application of IFC Standard in Interoperability and Energy Analysis

  • Hyunjoo Kim;Zhenhua Shen
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.87-93
    • /
    • 2013
  • In this research, a new methodology to perform building energy analysis using Industry Foundation Classes (IFC) standard has been studied. With the help of Archicad 14 modeling software, a 3D test model is generated and then exported to IFCXML format. A ruby code program retrieves the building information from the resulting IFCXML file using Nokogiri library. An INP file is created and gets ready for next energy analysis step. DOE 2.2 program analyzes the INP file and gives a detailed report of the energy cost of the building. Case study shows when using the IFC standard method, the Interoperability of the energy analysis is greatly improved. The main stream 3D building modeling software supports IFC standard. DOE 2.2 is able to read the INP file generated by IFC file. This means almost any 3D model created by main stream modeling software can be analyze in terms of energy cost Thus, IFC based energy analysis method has a promising future. With the development and application of IFC standard, designers can do more complex and easy-to-run energy analysis in a more efficient way.

  • PDF

Stepwise Technique for Improving Building Energy Efficiency Rating Utilizing Quantified Simulation Model (정량화 시뮬레이션 모델을 활용한 단계적인 건축물에너지효율등급 향상 방안)

  • Kim, Gi-Seok;Kim, You-Min;Kim, Jong-Seung;Oh, Se-Gyu
    • KIEAE Journal
    • /
    • v.14 no.6
    • /
    • pp.65-73
    • /
    • 2014
  • Due to the Climate change and resource shortage by global warming, various problems are rising and getting worse around the world. Many countries are doing the considerable efforts to reduce greenhouse gas emissions. The government of South Korea also plans to decrease greenhouse gas emission, the various pilot projects are underway, which includes obligation of energy efficiency 1st rating and greenhouse gas target management system of public buildings. In particular, luxurious government office buildings and energy-wasting public building have issued and emerged as a social problem. Energy efficiency improvement of the existing public office buildings are becoming an important issue recently. This study is proposed the step-by-step energy improvement model according to the building energy efficiency rate in order to reduce the energy consumption. To attain this end, I set up a base model by analyzing the current architectural conditions of the existing public office buildings and grasped the specific properties of building energy consumption through energy simulations. Furthermore, I suggested phased reduction prototypes for the reduction target of energy consumption by applying the methods of the zero energy building plan. This study is expecting that prototypes would give directions when it comes to planning the implementation policy of phased building plan factors, according the building energy consumption reduction goal in the existing public office buildings which are the subject of building energy target management system.

The Role of the Green Building Code in Achieving Sustainable Green Built Environment: the Philippines

  • Dela Cruz, John Christopher R.
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.750-753
    • /
    • 2015
  • The continuing trend of built environment set forth by the rise of modernization and industrialization has led every country in achieving their respective economic development. Along side this trend is an issue that needs to be addressed - the environmental impacts of the built industry. Construction and maintenance of buildings are said to consume 40% of the world's energy, 65% of electricity, and 40% of raw materials, creating drastic pollutants harmful not only to the environment but also to human. Figures have been released and analyzed proving the contributions of built environment with environmental depreciation. Said figures earned concerns not just from different private and non-profit organizations but also the governments of every country, thus, steps towards sustainable development are being implemented. As a response, the "green" was added in the built environment. Later on, the now emerging concept of "National Green Building Code" found its role in the policy of various states in protecting the people in accord with the nature. This paper appreciates the initiatives of various countries and non-profit organizations in their drive to pursue sustainable green built environment in general, and specifically proposes an establishment of an "incentives grant framework" as an additional legislative policy to be included in the draft of the National Green Building Code of the Philippines.

  • PDF

The study of in-situ measurement method for wall thermal performance diagnosis of existing apartment (기존 공동 주택의 벽체 열성능 현장 측정법에 관한 연구)

  • Kim, Seohoon;Kim, Jonghun;Yoo, Seunghwan;Jeong, Hakgeun;Song, Kyoodong
    • KIEAE Journal
    • /
    • v.16 no.4
    • /
    • pp.71-77
    • /
    • 2016
  • Purpose : The energy saving in a residential building (apartment) sector is known as one of the effective solution of energy reduction. In South Korea, the government has recently reinforced regulations associated with the energy performance of buildings. However, there is a lack of research on the methods for the energy performance diagnosis that is used to analyze the wall thermal performance of the existing apartments. Because a reliable diagnosis is necessary to save the building energy, this study analyzed wall thermal performance of an existing apartment in Seoul. Method : This paper applied two methods for analysis of the thermal insulation performance; HFM(Heat Flow Meter) method and ASTR(Air-Surface Temperature Ratio) method. The HFM method is suggested by ISO9869-1 code to measure the thermal performance. The ASTR method is proposed by this study for the simplified In-situ measurement and it uses three temperature data (interior wall surface, interior and exterior air) and the overall heat transfer coefficient. This study conducted the experiment of an existing apartment in Seoul using these methods and analyzed the results. Furthermore, the energy simulation tool of the building was used to suggest retrofit of the building based on the results of measurements. Result : The error rate of HFM method and ASTR method was analyzed in about 17 to 20%. As the results of comparison between the initial design values of the wall and the measured values, the 26% degradation of insulation thermal performance was measured. Lastly, the energy simulation tool of the building shows 10.8% energy savings in accordance with the construction of suggested retrofit.

Evaluation of Emulative Level for Precast Moment Frame Systems with Dry Mechanical Splices by Using Nonlinear Dynamic Analysis (비선형동적해석을 통한 건식 기계적이음을 갖는 프리캐스트 모멘트 골조의 동등성 평가)

  • Kim, Seon-Hoon;Lee, Won Jun;Lee, Deuckhang
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.85-92
    • /
    • 2024
  • This study presents code-compliant seismic details by addressing dry mechanical splices for precast concrete (PC) beam-column connections in the ACI 318-19 code. To this end, critical observations of previous test results on precast beam-column connection specimens with the proposed seismic detail are briefly reported in this study, along with a typical reinforced concrete (RC) monolithic connection. On this basis, nonlinear dynamic models were developed to verify seismic responses of the PC emulative moment-resisting frame systems. As the current design code allows only the emulative design approach, this study aims at identifying the seismic performances of PC moment frame systems depending on their emulative levels, for which two extreme cases were intentionally chosen as the non-emulative (unbonded self-centering with marginal energy dissipation) and fully-emulative connection details. Their corresponding hysteresis models were set by using commercial finite element analysis software. According to the current seismic design provisions, a typical five-story building was designed as a target PC building. Subsequently, nonlinear dynamic time history analyses were performed with seven ground motions to investigate the impact of emulation level or hysteresis models (i.e., energy dissipation performance) on system responses between the emulative and non-emulative PC moment frames. The analytical results showed that both the base shear and story drift ratio were substantially reduced in the emulative system compared to that of the non-emulative one, and it indicates the importance of the code-compliant (i.e., emulative) connection details on the seismic performance of the precast building.