• Title/Summary/Keyword: Building Structures

Search Result 3,930, Processing Time 0.027 seconds

Evaluation of Seismic Performance of Mixed Building Structures by using the Nonlinear Displacement Mode Method (비선형 변위모드법을 적용한 복합구조물의 내진성능평가)

  • 김부식;송호산
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.71-80
    • /
    • 2003
  • Though a nonlinear time history analysis may be provided to estimate more exactly the seismic performance of building structure, approximation methods are still needed in the aspect of practicality and simplicity, In converting a multi-story structure to an equivalent SDOF system, the mode vectors of the multi-story structure are assumed as the mode shape in elastic state regardless of elastic or elastic-plastic state. However, the characteristics of displacement mode are also changed after the yielding made in the structural elements, because the structure becomes inelastic in each incremental load step. In this research, a method of converting MDOF system to ESDOF system is presented by using nonlinear displacement mode considering the mode change of structures after the yielding. Also, the accuracy and efficiency of the method of the nonlinear displacement mode method of the estimate of seismic response of Mixed Building Structures were examined by comparing the displacements of the roof level of the multi-story building structures estimated from this converted displacement response of ESDOF with the displacement of the roof level through the nonlinear dynamic analysis of the multi-story building structures subjected to an actual earthquake excitation.

Performance Analysis of SMART Frame Applied to RC Column-Beam Structures (RC 라멘조에 SMART Frame 적용 시 효용성 분석)

  • Cho, Wonhyun;Lim, Chaeyeon;Jang, Duk Bea;Kim, Sunkuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.168-169
    • /
    • 2015
  • SMART Frame is a composite precast concrete structure system to deliver the advantages of both steel frame and reinforced concrete. Many studies have established to date that SMART Frame is more advantageous than conventional frame-type structure in terms of structural stability, constructability, economic viability as well as reduction of construction schedule. However, such studies have focused primarily on wall-type or flat slab-type apartment housing structures, failing to include Rahmen structures in their scope. Accordingly, this study aims to analyze the benefits of potential application of SMART Frame to RC Rahmen structures. As the structural stability and constructability of SMART Frame is already proven, this study reviews its benefits from the perspective of cost reduction. Conclusion of this study will be used subsequently in predicting the benefits of SMART Frame when it is adapted to RC Rahmen structures.

  • PDF

Seismic Damage to RC Low-rise Building Structures Having Irregularities at the Ground Story During the 15 November 2017 Pohang, Korea, Earthquake (2017.11.15. 포항 흥해지진의 저층 RC 비틀림 비정형 건축물의 피해 및 손상 특성)

  • Hwang, Kyung Ran;Lee, Han Seon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.103-111
    • /
    • 2018
  • This study examines the seismic failure of RC low-rise building structures having irregularities at the ground story during the 15 November 2017 Pohang, Korea, earthquake, $M_w=5.4$, which is the second strongest since the government began monitoring them in 1978 in South Korea. Some 2,000 private houses were damaged or destroyed in this earthquake. Particularly, serious damage to the piloti story of RC low-rise residential building structures of fewer than five stories was observed within 3 km of the epicenter with brittle shear failure of columns and walls due to severe torsional behavior. Buildings below six stories constructed before 2005 did not have to comply with seismic design requirements, so confinement detailing of columns and walls also led to inadequate performance. However, some buildings constructed after 2005 were damaged at the flexible side of the piloti story due to the high torsional irregularity. Based on these results, this study focuses on the problems of the seismic torsion design approach in current building codes.

A study on the Remote Control System for Measuring Gradient of temporary earth retaining structure (흙막이 가시설 구조물의 무선원격계측관리시스템에 관한 연구)

  • Woo, Jong-Yeol;Hong, Seong-Wook;Kim, Sang-Won;Seo, Yong-Chil;Shin, Chan-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05b
    • /
    • pp.49-52
    • /
    • 2011
  • This study concerned with the retention structures or inverted temporary building for displacement measurement in the underground soil after drilling a vertical tilt sensor attached to the vertical distance required to maintain a real-time measurement and management in order to install the wireless measuring devices installed in the field through remote control and management program for the safety of retaining structures temporary building be found on the internet in real time temporary building the retention is to develop a safety management system. And based on this technology to monitor the future status of the various structures possible to add a variety of sensors and Life Cycle Prediction of the structure and needs to evolve into intelligent systems and wireless networks using wireless communications infrastructure systems based on expanding domestic market penetration by developing instrumentation pioneer in overseas markets as well as the activation can also be judged.

  • PDF

Integrated vibration control and health monitoring of building structures: a time-domain approach

  • Chen, B.;Xu, Y.L.;Zhao, X.
    • Smart Structures and Systems
    • /
    • v.6 no.7
    • /
    • pp.811-833
    • /
    • 2010
  • Vibration control and health monitoring of building structures have been actively investigated in recent years but treated separately according to the primary objective pursued. This paper presents a general approach in the time domain for integrating vibration control and health monitoring of a building structure to accommodate various types of control devices and on-line damage detection. The concept of the time-domain approach for integrated vibration control and health monitoring is first introduced. A parameter identification scheme is then developed to identify structural stiffness parameters and update the structural analytical model. Based on the updated analytical model, vibration control of the building using semi-active friction dampers against earthquake excitation is carried out. By assuming that the building suffers certain damage after extreme event or long service and by using the previously identified original structural parameters, a damage detection scheme is finally proposed and used for damage detection. The feasibility of the proposed approach is demonstrated through detailed numerical examples and extensive parameter studies.

Investigation of the SHM-oriented model and dynamic characteristics of a super-tall building

  • Xiong, Hai-Bei;Cao, Ji-Xing;Zhang, Feng-Liang;Ou, Xiang;Chen, Chen-Jie
    • Smart Structures and Systems
    • /
    • v.23 no.3
    • /
    • pp.295-306
    • /
    • 2019
  • Shanghai Tower is a 632-meter super high-rise building located in an area with wind and active earthquake. A sophisticated structural health monitoring (SHM) system consisting of more than 400 sensors has been built to carry out a long-term monitoring for its operational safety. In this paper, a reduced-order model including 31 elements was generated from a full model of this super tall building. An iterative regularized matrix method was proposed to tune the system parameters, making the dynamic characteristic of the reduced-order model be consistent with those in the full model. The updating reduced-order model can be regarded as a benchmark model for further analysis. A long-term monitoring for structural dynamic characteristics of Shanghai Tower under different construction stages was also investigated. The identified results, including natural frequency and damping ratio, were discussed. Based on the data collected from the SHM system, the dynamic characteristics of the whole structure was investigated. Compared with the result of the finite element model, a good agreement can be observed. The result provides a valuable reference for examining the evolution of future dynamic characteristics of this super tall building.

Feasibility study on using crowdsourced smartphones to estimate buildings' natural frequencies during earthquakes

  • Ting-Yu Hsu;Yi-Wen Ke;Yo-Ming Hsieh;Chi-Ting Weng
    • Smart Structures and Systems
    • /
    • v.31 no.2
    • /
    • pp.141-154
    • /
    • 2023
  • After an earthquake, information regarding potential damage to buildings close to the epicenter is very important during the initial emergency response. This study proposes the use of crowdsourced measured acceleration response data collected from smartphones located within buildings to perform system identification of building structures during earthquake excitations, and the feasibility of the proposed approach is studied. The principal advantage of using crowdsourced smartphone data is the potential to determine the condition of millions of buildings without incurring hardware, installation, and long-term maintenance costs. This study's goal is to assess the feasibility of identifying the lowest fundamental natural frequencies of buildings without knowing the orientations and precise locations of the crowds' smartphones in advance. Both input-output and output-only identification methods are used to identify the lowest fundamental natural frequencies of numerical finite element models of a real building structure. The effects of time synchronization and the orientation alignment between nearby smartphones on the identification results are discussed, and the proposed approach's performance is verified using large-scale shake table tests of a scaled steel building. The presented results illustrate the potential of using crowdsourced smartphone data with the proposed approach to identify the lowest fundamental natural frequencies of building structures, information that should be valuable in making emergency response decisions.

A preliminary numerical analysis study on the seismic stability of a building and underground structure by using SSI (SSI를 이용한 건물과 인접지하구조물의 내진 안정성에 대한 기초 수치해석 연구)

  • You, Kwang-Ho;Kim, Young-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.1
    • /
    • pp.23-38
    • /
    • 2018
  • Up to now, most of studies on seismic analysis have been limited to analyze buildings and underground structures individually so that the interaction between them could not be analyzed effectively. Thus, in this study, a dynamic analysis was conducted for soil-structure interaction with a complex underground facility composed of a building and an adjacent underground structure constructed on a surface soil and the bed rock ground conditions. Seismic stability was analyzed based on interstory drift ratio and bending stress of structure members. As a result, an underground structure has more effect on a high-rise building than a low-rise building. However the above structures were proved to be favorable for seismic stability. On the other hand, tensile bending stresses exceeded the allowable value at the underground part of the building and the adjacent underground structure so that it turned out that the underground part could be weaker than the above part. Therefore, it is inferred that above and underground structures should be analyzed simultaneously for better prediction of their interaction behavior during seismic analyses because there exist various structures around buildings in big cities.

3D FEM analysis of earthquake induced pounding responses between asymmetric buildings

  • Bi, Kaiming;Hao, Hong;Sun, Zhiguo
    • Earthquakes and Structures
    • /
    • v.13 no.4
    • /
    • pp.377-386
    • /
    • 2017
  • Earthquake-induced pounding damages to building structures were repeatedly observed in many previous major earthquakes. Extensive researches have been carried out in this field. Previous studies mainly focused on the regular shaped buildings and each building was normally simplified as a single-degree-of-freedom (SDOF) system or a multi-degree-of-freedom (MDOF) system by assuming the masses of the building lumped at the floor levels. The researches on the pounding responses between irregular asymmetric buildings are rare. For the asymmetric buildings subjected to earthquake loading, torsional vibration modes of the structures are excited, which in turn may significantly change the structural responses. Moreover, contact element was normally used to consider the pounding phenomenon in previous studies, which may result in inaccurate estimations of the structural responses since this method is based on the point-to-point pounding assumption with the predetermined pounding locations. In reality, poundings may take place between any locations. In other words, the pounding locations cannot be predefined. To more realistically consider the arbitrary poundings between asymmetric structures, detailed three-dimensional (3D) finite element models (FEM) and arbitrary pounding algorithm are necessary. This paper carries out numerical simulations on the pounding responses between a symmetric rectangular-shaped building and an asymmetric L-shaped building by using the explicit finite element code LS-DYNA. The detailed 3D FEMs are developed and arbitrary 3D pounding locations between these two buildings under bi-directional earthquake ground motions are investigated. Special attention is paid to the relative locations of two adjacent buildings. The influences of the left-and-right, fore-and-aft relative locations and separation gap between the two buildings on the pounding responses are systematically investigated.

Analysis of Sustainable Building Design Element in Winter Sports Stadia and Convention Centre (대규모 동계스포츠 및 집회시설의 친환경계획요소 분석)

  • Choi, Dong-Ho;Yang, Jeong-Hoon;Seok, Ho-Tae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.9 no.3
    • /
    • pp.49-58
    • /
    • 2009
  • This paper is to draw basic data for the revitalization of the sustainable buildings and the improvement of sustainable building design technology in Korea by analysing the design techniques of sustainable building and the application of the techniques applied to the large volume buildings through the study of foreign cases. This study introduces the design elements of sustainable building applied to the two winter sports stadia and one convention centre which have recently completed for the 2010 Winter Olympics in Canada and analyses the design techniques of sustainable building by the lists of LEED Green Building Rating System as well.

  • PDF