• Title/Summary/Keyword: Building Simulation

검색결과 2,262건 처리시간 0.034초

Spatial and temporal distribution of driving rain on a low-rise building

  • Blocken, Bert;Carmeliet, Jan
    • Wind and Structures
    • /
    • 제5권5호
    • /
    • pp.441-462
    • /
    • 2002
  • This paper presents a practical numerical method to determine both the spatial and temporal distribution of driving rain on buildings. It is based on an existing numerical simulation technique and uses the building geometry and climatic data at the building site as input. The method is applied to determine the 3D spatial and temporal distribution of wind-driven rain on the facade a low-rise building of complex geometry. Distinct wetting patterns are found. The important causes giving rise to these particular patterns are identified : (1) sweeping of raindrops towards vertical building edges, (2) sweeping of raindrops towards top edges, (3) shelter effect by various roof overhang configurations. The comparison of the numerical results with full-scale measurements in both space and time for a number of on site recorded rain events shows the numerical method to yield accurate results.

Towards More Accurate Space-Use Prediction: A Conceptual Framework of an Agent-Based Space-Use Prediction Simulation System

  • Cha, Seung Hyun;Kim, Tae Wan
    • 국제학술발표논문집
    • /
    • The 6th International Conference on Construction Engineering and Project Management
    • /
    • pp.349-352
    • /
    • 2015
  • Size of building has a direct relationship with building cost, energy use and space maintenance cost. Therefore, minimizing building size during a project development is of paramount importance against such wastes. However, incautious reduction of building size may result in crowded space, and therefore harms the functionality despite the fact that building is supposed to satisfactorily support users' activity. A well-balanced design solution is, therefore, needed at an optimum level that minimizes building size in tandem with providing sufficient space to maintain functionality. For such design, architects and engineers need to be informed accurate and reliable space-use information. We present in this paper a conceptual framework of an agent-based space-use prediction simulation system that provides individual level space-use information over time in a building in consideration of project specific user information and activity schedules, space preference, ad beavioural rules. The information will accordingly assist architects and engineers to optimize space of the building as appropriate.

  • PDF

Canopy Model 적용을 통한 도심지 풍환경 예측 CFD 시뮬레이션 결과의 보정 (Modification of CFD results for Wind Environment in Urban area with Tree Canopy Model)

  • 정수현;홍인표;최종규;송두삼
    • 한국태양에너지학회 논문집
    • /
    • 제32권spc3호
    • /
    • pp.185-193
    • /
    • 2012
  • Recently rapid urbanization facilitates development of high-rise building complex including apartment and office building in urban area. Many problems related with high -rise building are reported. Especially, unpleasant strong winds in pedestrian area are frequently encountered around the high-rise building. CFD simulation methods are used to analyze the wind environment of pedestrian level in high-rise building block. However, the results show differences between CFD and measurement. This difference is attributed to improper use of CFD. Conventional CFD simulation for wind environment around high-rise building does not describe the effect of trees, shrubs and plants near ground which affect the wind environment of pedestrian level. Canopy model can be used to reproduce the aerodynamic effects of trees, shrubs and plants near ground. In this paper, CFD simulation methods coupled with the tree canopy model to predict wind environment of pedestrian level in high-rise residential building block were suggested and the validity was analyzed by comparison between measurement and CFD results.

BIM을 이용한 건축물 초기 디자인 단계에서 초고층 업무용 건물의 최적 에너지 형태개발 (Development of Energy Optimized Geometry Using BIM for Super Tall Office Building in Early Design Stages)

  • 류한수;김인한;추승연
    • 한국CDE학회논문집
    • /
    • 제16권2호
    • /
    • pp.83-91
    • /
    • 2011
  • There are many researches to make low-energy building. Lots of them focus on facility systems and insulation performance of building materials. However, not only systematic solutions but also approaches in early design stages are important to reduce energy consumption. Using BIM(Building Information Modelling) is considered as an effective and efficient way to simulate building energy and decide alternatives than traditional energy simulation because BIM based energy simulation makes to reduce much time for energy modeling. This study focuses on development of optimized geometry for super tall office buildings in Seoul, Korea. Specifically, length to width ratio and building orientation are main topics of this study because these two topics are the most basic and preceding factors deciding mass design. In this study, Revit MEP 2011 and Ecotect Analysis 2011 are used to make case models and calculate energy load in early design stages. Energy properties of material abide by Korean Standards for Energy Conservation in Building, Korean Guideline for Energy Conservation in Public Office and ASHRAE Standard in USA. This study presents best length to width ratio of plan and optimized orientation by evaluating the case models. Furthermore, this study suggests what should be considered for each case to decrease energy load.

공조시스뎀 최적화를 통한 건물에너지 절감사례 연구 (A Case Study on the Building Energy Savings through HVAC System Optimization Process)

  • 허정호;권한솔;한수곤;임병찬
    • 설비공학논문집
    • /
    • 제18권5호
    • /
    • pp.426-433
    • /
    • 2006
  • The requirements for the optimal building system design is numerous. However, most system designers do not take care of various design strategies. They often argue that the proper simulation tools are not existed to solve the implicated design requirements and the time to consider many alternatives of building systems are insufficient. The aim of this study is to develop the optimization interface program that considers various system design variables and eventually find both the optimal values of annual energy use and cost. Therefore, Doe2Opt is developed to easily perform simulation-optimization process based on DOE2 and GenOpt, and minimizes energy cost of small-to-medium sized building for 6.7% and that of large sized building for 3% with optimizing several HVAC system variables.

폭발에 의한 건축물 붕괴 시 매몰공동 위치 예측에 관한 수치해석 사례 연구 (Numerical Simulation for Prediction of Existing Cavity Location on Explosion-Induced Building Collapse)

  • 정자혜;박훈;김광염;신휴성
    • 한국안전학회지
    • /
    • 제30권6호
    • /
    • pp.94-101
    • /
    • 2015
  • When a severe disaster such as a building collapse occurs, a first priority for rapid rescue is to find a location where people are highly expected to be buried but alive. It is, however, very difficult to correctly designate the location of such cavities by conventional geophysical survey due to a pile of debris of building members. In this study, location of possible lifeguard cavities were evaluated through a series of simulations of building collapse by explosion depending on the height of the building, a structure of basement floor and a location of explosion. Three types of building structure: five-story, ten-story and fifteen-story were prepared as a model for the simulation. As a results, in the case of low building, only basement floor partially collapsed. On the other hand, in the case of high building, a collapsed range on the inside of the building increased and lifeguard spaces were formed only in the lateral side or corner of the building. In addition, when a wall exists in the basement floor, the possibility that cavities could be formed increased compared to the cases without wall. However, for the fifteen-story building case, no possible lifeguard cavity was found. It is noted that for a high rise building, the height of building more affect forming of safeguard cavity than the structure of the basement floor.

지열 열펌프 및 태양광 발전 적용이 비주거용 건물의 에너지효율등급과 ZEB 인증 등급에 미치는 영향 (The Effect of a Geothermal Heat Pump and Photovoltaics Application on the Building Energy Efficiency and ZEB Certification Rating for a Non-Residential Building)

  • 문건호;박창용
    • 한국지열·수열에너지학회논문집
    • /
    • 제19권1호
    • /
    • pp.1-13
    • /
    • 2023
  • Many government in the world have conducted building energy performance certification program to reduce building energy consumption. In this study, a reference building and its HVAC system was modeled, and the energy load and consumption were estimated by the ECO2 program. The software is a simple building energy simulation program based on monthly calculated method. The building energy efficiency rating the the reference building was 1+ under baseline condition. The simulation results showed that the insulation performance slightly affected building energy load and consumption, but light density had a significant effect on them. The application of geothermal heat pumps gave improvement of building energy efficiency rating but it could not make it possible to get zero energy building(ZEB) certification. The ZEB 5 certification could be achieved by using photovoltaics, however getting better grade was difficult. The simulation results showed that the ZEB 4 certification, one grade higher than ZEB 5, could be attained by using more than one renewable energy source such as geothermal and solar energy in this study.

에너지 절약형 건물의 통합설계 확산을 위한 시뮬레이션 사용성 개선 방향 - 실무자 설문과 설계 프로세스 비교 및 분석을 중심으로 - (How to Improve Usability of Building Energy Simulation for the Integrated Design Process - Based on Practitioner Survey and Design Process Comparison -)

  • 김선혜
    • KIEAE Journal
    • /
    • 제15권6호
    • /
    • pp.47-56
    • /
    • 2015
  • Purpose and Method: Despite benefits of building energy simulations, practitioners seem to be reluctant to use simulations for design decision making. By means of survey and interviews, this study aims to investigate domestic hindrance against increasing simulation usability, and to collect user requirement to enhance technical functionality of the simulation. Also this study compares the Information Sharing Workflow by Stantec and general domestic design process in order to identify a direction of the Integrated Design Process. Result: Finally this study wraps up with suggestions of how simulation functionality and use protocol should be in order to satisfy user requirement and also to gather more users.

Random number sensitivity in simulation of wind loads

  • Kumar, K. Suresh
    • Wind and Structures
    • /
    • 제3권1호
    • /
    • pp.1-10
    • /
    • 2000
  • Recently, an efficient and practical method has been developed for the generation of univariate non-Gaussian wind pressure time histories on low building roofs; this methodology requires intermittent exponential random numbers for the simulation. On the other hand, the conventional spectral representation scheme with random phase is found suitable for the generation of univariate Gaussian wind pressure time histories on low building roofs; this simulation scheme requires uniform random numbers. The dependency of these simulation methodologies on the random number generator is one of the items affecting the accuracy of the simultion result; therefore, an attempt has been made to investigate the issue. This note presents the observed sensitivity of random number sets in repetitive simulations of Gaussian and non-Gaussian wind pressures.

보행자 레벨의 풍환경 예측 시 Canopy Model을 적용한 CFD 시뮬레이션 타당성 검증 (Validation of applying Canopy model to predict wind environment of pedestrian level by CFD simulation)

  • 정수현;홍인표;송두삼
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2012년도 춘계학술발표대회 논문집
    • /
    • pp.345-353
    • /
    • 2012
  • Recently rapid urbanization facilitates development of high-rise building complex including apartment and office building in urban area. Many problems related with high-rise building are reported. Especially, unpleasant strong winds in pedestrian area are frequently encountered around the high-rise building. CFD simulation methods are used to analyze the wind environment of pedestrian level in high-rise building block. However the results show differences between CFD and measurement. The reason for the difference is that conventional CFD simulation couldn't consider the effect of trees, shrubs and plants which affect the wind environment. Canopy model is a solution to solve the limitation of CFD analysis. In this paper, the canopy model to predict wind environment of pedestrian level by CFD simulation will be proposed and the validity will be analyzed by comparison of measurement and CFD prediction.

  • PDF