• 제목/요약/키워드: Building Recycle

검색결과 94건 처리시간 0.027초

CNN기반의 딥러닝 모델을 활용한 잔골재 조립률 예측에 관한 실험적 연구 (An Experimental Study on the Measurement of Finess Modulus Using CNN-based Deep Learning Model)

  • 임성규;윤종완;박태준;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 봄 학술논문 발표대회
    • /
    • pp.10-11
    • /
    • 2021
  • As concrete is used in many construction works, the use of aggregates is increasing. However, supply and demand of high-quality aggregates has become difficult recently, and although circular aggregates that recycle construction waste are used, the performance of concrete, such as liquidity and strength, are being reduced due to defective aggregates. As a result, quality tests such as sieve analysis test are conducted, but a lot of waste occurs such as time and manpower. To solve this problem, this study was conducted to measure the assembly rate of fine aggregate, which accounts for about 35% of the concrete volume, using Deep Learning.

  • PDF

시멘트 페이스트의 강도특성에 미치는 중화 레드머드의 영향 (Effect of Neutralized Red Mud on the Strength Properties of Cement Paste)

  • 강혜주;강석표
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2020년도 봄 학술논문 발표대회
    • /
    • pp.27-28
    • /
    • 2020
  • In this study, as a measure to recycle red mud, which is a byproduct of the Bayer Process, red mud was manufactured as liquid and recycled without drying and grinding. Previous studies have shown that mechanical performance decreases when liquid red mud is applied to cement concrete. Therefore, in this study, liquid red mud was neutralized with nitric acid and applied to cement paste to examine the properties of cement paste according to the addition of red mud. As a result, the compressive strength of 10% liquid red mud decreased by 37.7% compared to Plain, and 10% liquid red mud indicates similar strength to Plain and restores the strength.

  • PDF

미국 내 LEED 그린빌딩의 지속가능한 업무공간 사례 연구 - 실내 평가요소 중 재료 및 자원을 중심으로 - (Case Study on Sustainable office space of the LEED Green Building in the United States - Focused on the Materials and Resources of Indoor Evaluation Factors -)

  • 하숙녕;한영호
    • 한국실내디자인학회논문집
    • /
    • 제22권2호
    • /
    • pp.176-185
    • /
    • 2013
  • (Background)In modern industrial society, the design industry failed to observe the law of nature, destructing it. Regardless its intention, the design industry destructed the environment so that it can't maintain the future life because of waste and disaster. For the purpose, it is important to adopt the technology to reuse the waste resource generated by building or minimize the damage to environment for the resource that can't be recycled. (Methods)On the assumption that the material and resource can be an alternative plan for the design that can make environment be sustained, the study analyzed materials and resources out of superior office space of USA, which were selected by LEED Green Building Rating System. (Results)The analysis result revealed that all cases reused main structural part of existing building and indoor and various materials were reused or recycled. Especially, the materials without or with low amount of VOCs and formaldehyde were used. In order to reduce construction waste, the finish of existing building was exposed as it was, 50% of reused materials were used or disassemblable materials were used. When regional materials are used, there is an advantage to reduce transportation cost and recycle the materials rapidly. Lastly, the environment-friendly certified by FSC was used in all cases. (Conclusion)After all, the material is one of the space design strategies sensitive to environment so it is important to select good material. Harmless, environment-friendly materials applied to sustainable office space contribute to the creation of healthy environment. In addition, the use of recycled materials and reused materials to minimize waste is also essential factor for creating sustainable space.

국내 건설 폐기물 활용 현황 및 활성화에 관한 연구 (A Study on the Method Applying Construction Wastes of Construction in Korea)

  • 장재명;최희복;강경인
    • 한국건축시공학회지
    • /
    • 제3권1호
    • /
    • pp.147-154
    • /
    • 2003
  • Recently, the amount of the construction and demolition wastes has rapidly increased due to increasing construction projects. In the past, most of the construction and demolition wastes were buried in the ground of thrown away. Illegally, without any treatment, so various harmful environmental pollution problems were occurred. In this study, the domestic data on the amount of the construction and demolition wastes and the disposal methods were collection and analysed. Specially, the recycling and management systems of the construction and asphalt concrete wastes were studied. A new technology and necessary policy for recycling were suggested. In general, the industrial wastes were produced in the particular place, and the amount and the characteristics of the wastes able to be estimated by the studies on the treatment technology. And the investment of the facilities for the industrial wastes have been made continuously. But little attention has been relatively given to the treatment technology. And system for the construction and demolition wastes for the political support and facilitation on the proper treatment and the recycling, the necessary of information exchange system and the manifest system for treatment of waste on commission were recommended, and also devised methods to develope and support the recycling industry. In the future, the subject of study is going to carry out analysis of economic and market in making products.

폐콘크리트의 순환이용을 위한 폐미분말의 재활용 기술 (Recycling Technology of Cementitious Powder for Completely Recycling of Concrete Waste)

  • 박차원;강병희
    • 한국건축시공학회지
    • /
    • 제5권3호
    • /
    • pp.109-116
    • /
    • 2005
  • Recently, there have been many studies seeking towards the utilization of cementitious powder from concrete waste as recycled cement. However, most of the studies actually have been researches about the reuse of mortar or paste, not concrete waste. In fact, either mortar or paste is quite different from a real concrete waste in terms of age and mixture. Thus the purpose of this study is to examine basic physical properties of recycled cement, manufactured with cementitious powder from concrete waste, and analyze differences in chemical and hydraulic properties of the cement and its tested model. As a result of the chemical analysis, recycle cement is composed mainly of CaO and $SiO_2$, and that it is even lower in the content of CaO than Portland cement, which is also supported by previous studies. But, Differently from previous studies, calcining temperature of 650 was found an optimal condition under which cementitious powder from concrete waste could restore its hydraulic properties.

역할-거동 모델링에 기반한 화학공정 이상 진단을 위한 이상-인과 그래프 모델의 합성 (Synthesis of the Fault-Causality Graph Model for Fault Diagnosis in Chemical Processes Based On Role-Behavior Modeling)

  • 이동언;어수영;윤인섭
    • 제어로봇시스템학회논문지
    • /
    • 제10권5호
    • /
    • pp.450-457
    • /
    • 2004
  • In this research, the automatic synthesis of knowledge models is proposed. which are the basis of the methods using qualitative models adapted widely in fault diagnosis and hazard evaluation of chemical processes. To provide an easy and fast way to construct accurate causal model of the target process, the Role-Behavior modeling method is developed to represent the knowledge of modularized process units. In this modeling method, Fault-Behavior model and Structure-Role model present the relationship of the internal behaviors and faults in the process units and the relationship between process units respectively. Through the multiple modeling techniques, the knowledge is separated into what is independent of process and dependent on process to provide the extensibility and portability in model building, and possibility in the automatic synthesis. By taking advantage of the Role-Behavior Model, an algorithm is proposed to synthesize the plant-wide causal model, Fault-Causality Graph (FCG) from specific Fault-Behavior models of the each unit process, which are derived from generic Fault-Behavior models and Structure-Role model. To validate the proposed modeling method and algorithm, a system for building FCG model is developed on G2, an expert system development tool. Case study such as CSTR with recycle using the developed system showed that the proposed method and algorithm were remarkably effective in synthesizing the causal knowledge models for diagnosis of chemical processes.

폐타이어와 폐유리 미분말을 소재로 한 무기질 탄성도막 방수공법에 관한 실험적 연구 (An Experimental Study on the Cement-Polymer Coatings Waterproofing Method Composed with Waste Tire Chip and Waste Glass powder)

  • 김영삼;양승도;이성일;김윤욱;오상근
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2002년도 학술.기술논문발표회
    • /
    • pp.17-22
    • /
    • 2002
  • This Waterproofing Material which mainly consisted of 2 components of waste tire chip powder and waste glass powder. This Study is abut development of waterproofing Material, There is not tried in domestic. The most Motive of this Study wishes to recycle resources and get the economic performance for waterproofing Material The result of this Study is as followings. (1) Dense waterproofing floor is formed between waste tire chip by Coupling Agent(the most effective method to encourage adhesive strength and raise cohesion of material by combination.) (2) Expected to bring effect to shorten construction period at spot application potentially space-time in moisture aspect. Also, shortening effect of construction period and spot work are considered to be gone efficiently selecting pre-mix construction method. (3) This development Waterproofing material has elasticity that nature side compatibility of cement ingredient and plastic Emulsion have when utilize and constructs waite resources (being waste tire chip and waste glass powdered).

  • PDF

혼화재료의 치환에 따른 경량기포 콘크리트의 기초적 특성분석 (Fundamental Properties of Lightweight Foamed Concrete Depending on Admixture Incorporation)

  • 최성용;신재경;정광복;한민철;한천구
    • 한국건축시공학회지
    • /
    • 제7권2호통권24호
    • /
    • pp.77-83
    • /
    • 2007
  • This study investigated the fundamental properties of the lightweight foamed concrete depending on various admixtures, and the results were summarized as following. When 20% of cement kiln dust(CKD) and 0.002% of stabilizing agent were mixed to lightweight foamed concrete, it was necessary to use a superplasticizer because flowability was decreased. However, it could reduce sinking depth which were the extensive trouble of lightweight foamed concrete. Bulk density was divided into '0.4' and '0.5' grades on KS according to unit volume weight. The compressive strength was less than that of plain concrete when admixtures were applied, but the results exceeded the minimum strength of the each grades on KS. Totally, it is found that the combination of 20% of CKD and 0.002% of stabilizing agent makes it possible to reduce a sinking depth, recycle resources, and save cost when were mixed.

폐콘크리트 미분말을 이용한 재생시멘트 모르터의 중성화 특성 (Carbonation Properties of Recycled Cement Mortar made of Cementitious Powder from Concrete Waste)

  • 김진양;박차원;안재철;강병희
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2005년도 춘계 학술기술논문발표대회 논문집
    • /
    • pp.61-64
    • /
    • 2005
  • Recently, there have been many studies about recycling cementitious powder from concrete waste(hereinafter referred to as waste powder), generated after recycle aggregate production. Previous studies showed that when the heating process of waste powder at $700^{\circ}C,\;Ca(OH)_2$ in paste is dehydrated making possible the restoration of hydraulic properties. Recycled cement with hydraulic properties restored is thought to be re-hydrated through the mechanism of hydration, which is almost similar in Portland cement. This clearly suggests that the hydrate of recycled cement is alkali in type. Like in general concrete, if recycled cement is used as a structural material, resistance performance against carbonation or neutralization by $CaCO_3$ in air probably would be most influential to the life of steel-reinforced concrete structure. Thus the purpose of this study is to make an experimental review on chemical properties of recycled cement, manufactured with concrete waste as base material, and investigate the durability of concrete using recycled cement through evaluating the cement s performance of resistance to carbonation in accordance with its accelerating age. Based on its results, further, the study seeks to provide basic information about ways of utilizing recycled cement.

  • PDF

시멘트계 결합재로서 레미콘 슬러지의 재활용 방안에 관한 기초적 연구 (The Fundamental Study on Reusing Method of Ready-Mixed Concrete Sludge as Cement Binder)

  • 박진섭;서경호;김효열;강병희
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2004년도 학술대회지
    • /
    • pp.21-26
    • /
    • 2004
  • This study deals with the Hydrated Ability of the Ready-Mixed Concrete's Sludge which is the recycling technology of that sludge. The experiment gathers sludge from Ready-mixed factory. shatters these into pieces in dry condition and understands the differences between current using Portland cement. And then. this examines the possibility of the recycle as a bonding agent through the Compressive Strength and considers the recovery of the hydration. This experiment concludes the same Chemical Composition with the normal Portland cement. while. under the appropriate procedure in hydration recovery. this sludge can be used as the bonding agent in cement. The chemical composition of solid Remicon sludge shows that it has 1.8 times $SiO_2$ than the normal Portland cement. meaning lots of aggregate in Remicon sludge. Also. the specific gravity of Remicon sluge increases with the rise of Baking Temperature and has no difference between 2.77 and 2.94. The mortar flow used for combining the baking material of Remicon sludge does was not changed and is the highest between $750^{\circ}C{\cdot}120min\;and\;800^{\circ}C{\cdot}180min$. Additionally. the Compressive Strength increases with the age, certifying the same Hydrated Ability like cement and the best condition for hydration is $750^{\circ}C{\cdot}120min.$

  • PDF