• Title/Summary/Keyword: Building Model Visualization

Search Result 96, Processing Time 0.024 seconds

DESIGN AND IMPLEMENTATION OF FEATURE-BASED 3D GEO-SPATIAL RENDERING SYSTEM USING OPENGL API

  • Kim Seung-Yeb;Lee Kiwon
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.321-324
    • /
    • 2005
  • In these days, the management and visualization of 3D geo-spatial information is regarded as one of an important issue in GiS and remote sensing fields. 3D GIS is considered with the database issues such as handling and managing of 3D geometry/topology attributes, whereas 3D visualization is basically concerned with 3D computer graphics. This study focused on the design and implementation for the OpenGL API-based rendering system for the complex types of 3D geo-spatial features. In this approach 3D features can be separately processed with the functions of authoring and manipulation of terrain segments, building segments, road segments, and other geo-based things with texture mapping. Using this implementation, it is possible to the generation of an integrated scene with these complex types of 3D features. This integrated rendering system based on the feature-based 3D-GIS model can be extended and effectively applied to urban environment analysis, 3D virtual simulation and fly-by navigation in urban planning. Furthermore, we expect that 3D-GIS visualization application based on OpenGL API can be easily extended into a real-time mobile 3D-GIS system, soon after the release of OpenGLIES which stands for OpenGL for embedded system, though this topic is beyond the scope of this implementation.

  • PDF

A Study on the Establishment of Design and Construction Process Standardization through Building BIM Application Case (건축물 BIM 적용사례를 통한 설계 및 시공프로세스 표준화 수립에 대한 연구)

  • Jeong, Hee-woong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.4
    • /
    • pp.347-358
    • /
    • 2022
  • In order to satisfy the extraction and use of information such as estimates and processes required in the design and construction stages of BIM, which is an expectation of overall construction operation for the design and construction stage of domestic buildings, it is insufficient to supply and apply mobile technologies or terminals. In this paper, standardization of BIM-based processes from the design stage to the construction stage is proposed as an efficient construction system method through mobile-based simulation and test-bed case analysis review. The current status and potential of BIM application were identified through theoretical review of BIM and case studies at home and abroad. In addition, the overall flow of the project and the direction of effective process construction were investigated through each process by 3D, 4D, and 5D execution stage and the role of each collaborator. 4D building process BIM simulation system using mobile was implemented by applying a visualization engine that simulates process information, object information connection module, and related object information. Therefore, it was possible to minimize the possibility of re-construction of the BIM design and construction process model through the visualization of 2D drawings based on the 3D model of the building and the review of errors and interferences in the drawings. In addition, in the implementation of simulation for each process of the construction process through mobile devices, it was possible to support construction progress and process management according to the optimal option selected by the user.

Generation of a City Spatial Model using a Digital Map and Draft Maps for a 3D Noise Map (3차원 소음지도제작을 위한 도화원도와 수치지도를 이용한 도시공간모델 생성)

  • Oh, So-Jung;Lee, Im-Pyeong;Kim, Seong-Joon;Choi, Kyoung-Ah
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.2
    • /
    • pp.179-188
    • /
    • 2008
  • This study aims for generating a city spatial model required for the creation of a 3D noise map. In this study, we propose an efficient method to generate 3D models of the terrain and buildings using only a digital map and draft maps previously established without using any sensory data. The terrain model is generated by interpolating into a grid the elevation values derived from both the contour lines and the elevation point of the digital map. Building model is generated by combining the 2D building boundaries and the building elevations extracted from the digital map and the draft map, respectively. This method has been then applied to a digital map and three sets of draft maps created in the different times. covering the entire area of Yeongdeungpo-gu. The generated city spatial model has been successfully utilized for the noise analysis and the 3D visualization of the analysis results.

Analysis of Georeferencing Accuracy in 3D Building Modeling Using CAD Plans (CAD 도면을 활용한 3차원 건축물 모델링의 Georeferencing 정확도 분석)

  • Kim, Ji-Seon;Yom, Jae-Hong;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.2
    • /
    • pp.117-131
    • /
    • 2007
  • Representation of building internal space is an active research area as the need for more geometrically accurate and visually realistic increases. 3 dimensional representation is common ground of research for disciplines such as computer graphics, architectural design and engineering and Geographic Information System (GIS). In many cases CAD plans are the starting point of reconstruction of 3D building models. The main objectives of building reconstruction in GIS applications are visualization and spatial analysis. Hence, CAD plans need to be preprocessed and edited to adapt to the data models of GIS SW and then georeferenced to enable spatial analysis. This study automated the preprocessing of CAD data using AutoCAD VBA (Visual Basic Application), and the processed data was topologically restructured for further analysis in GIS environment. Accuracy of georeferencing CAD data was also examined by comparing the results of coordinate transformation by using digital maps and GPS measurements as the sources of ground control points. The reconstructed buildings were then applied to visualization and network modeling.

A Study on Development of the Spatial Network Analysis Tool based on Open BIM Technologies (개방형 BIM 기반 공간네트워크 분석도구 개발에 관한 연구)

  • Park, Young-Sup
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.1
    • /
    • pp.7-16
    • /
    • 2012
  • One distinguishing feature of BIM(Building Information Modeling) is the objectification of spatial elements independently, which makes it easy to represent spatial network. From this perspective, this study aimed to develop the spatial network analysis tool based on open BIM technologies. From the literature review, an object model of spatial network with nodes and links and a process model from construction to visualization were established. A prototype system implementing the proposed models, named SNAT(Spatial Network Analysis Tool), was developed in Java platform with using its open source packages. SNAT can create a spatial network from IFC-BIM model, calculate the indices of spatial network analysis, and visualize it with the representing types(map, graph, matrix and table).

Three-Dimensional Visualization of Flood Inundation for Local Inundation Map (홍수지도 제작을 위한 홍수범람정보의 3차원 가시화)

  • Lee, Jin-Woo;Kim, Hyung-Jun;Cho, Yong-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.179-182
    • /
    • 2008
  • This study simulated the flood inundations of the Nakdong River catchment running through Yangsan, a small city located in the south eastern area of Korea by using the depth averaged two-dimensional hydrodynamic numerical model. The numerical model employs the staggered grid system including moving boundary and a finite different method to solve the Saint-Venant equations. A second order upwind scheme is used to discretize the nonlinear convection terms of the momentum equations, whereas linear terms are discretized by a first order leap-frog scheme(Cho and Yoon, 1998). The numerical model was applied to a real topography to simulate the flood inundation of the Yangsan basin. The numerical results for urban district are visualized in three dimension. These results can be essentially utilized to construct the three dimensional inundation map after building the GIS-based database in local public organizations in order to protect the life and property safely.

  • PDF

3D Earthwork BIM Design Process for a Road Project

  • Raza, Hassnain;Park, Sang-Il;Lee, Seung Soo;Tanoli, Waqas Arshad;Seo, Jongwon
    • Journal of KIBIM
    • /
    • v.7 no.2
    • /
    • pp.8-15
    • /
    • 2017
  • Building Information modeling is playing an important role in transforming the construction industry. It helped the industry with better visualization, minimum design errors, and excellent planning of the construction activities. Time and cost saving can be effectively achieved by using BIM for any construction project. It improves information exchange between all the project stakeholders. However, the development of earthwork 3D BIM is still underway and has not been fully implemented yet. This paper presents the study of a complete process for Earthwork BIM design using Autodesk Civil 3D. A real site road construction project is used as a case study to explain the process of earthwork modeling, starting from laser scanning to 3D model. Quantity take off calculation is very important part of any road construction project so during this study earthwork volume from two 3D earthwork model is calculated. The results obtained through this study will be the basis for future work which has been concluded in this paper.

AUTOMATED HAZARD IDENTIFICATION FRAMEWORK FOR THE PROACTIVE CONSIDERATION OF CONSTRUCTION SAFETY

  • JunHyuk Kwon;Byungil Kim;SangHyun Lee;Hyoungkwan Kim
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.60-65
    • /
    • 2013
  • Introducing the concept of construction safety in the design/engineering phase can improve the efficiency and effectiveness of safety management on construction sites. In this sense, further improvements for safety can be made in the design/engineering phase through the development of (1) an automated hazard identification process that is little dependent on user knowledge, (2) an automated construction schedule generation to accommodate varying hazard information over time, and (3) a visual representation of the results that is easy to understand. In this paper, we formulate an automated hazard identification framework for construction safety by extracting hazard information from related regulations to eliminate human interventions, and by utilizing a visualization technique in order to enhance users' understanding on hazard information. First, the hazard information is automatically extracted from textual safety and health regulations (i.e., Occupational Safety Health Administration (OSHA) Standards) by using natural language processing (NLP) techniques without users' interpretations. Next, scheduling and sequencing of the construction activities are automatically generated with regard to the 3D building model. Then, the extracted hazard information is integrated into the geometry data of construction elements in the industry foundation class (IFC) building model using a conformity-checking algorithm within the open source 3D computer graphics software. Preliminary results demonstrate that this approach is advantageous in that it can be used in the design/engineering phases of construction without the manual interpretation of safety experts, facilitating the designers' and engineers' proactive consideration for improving safety management.

  • PDF

The Generation of Digital Orthophotos and Three Dimensional Models of an Urban Area from Digital Aerial Photos

  • Lee, Jin-Duk
    • Korean Journal of Geomatics
    • /
    • v.2 no.2
    • /
    • pp.131-137
    • /
    • 2002
  • The digital photogrammetric products have been increasingly used as an accurate foundation for representing information associated with infrastructure management. The technological advances in merging raster and vector data within the framework of GIS have allowed for the inclusion of DTMs and digital orthophotos with vector data and its associated attributes. This study addresses not only generating DEMs and digital orthophotos but producing three dimensional building models from aerial photos of an urban area by employing the digital photogrammetric technology. DEMs and digital orthophotos were automatically generated through the process of orientations, image matching and so on, and then the practical problems, which must be solved especially in applying to urban areas, were considered. The accuracy of produced digital orthophotos was derived by using check points. Also three dimensional visualization imagery, which is useful in the landform analysis, and 3D building models were produced. Digital photogrammetric products would be used widely not only as GIS framework data layers by using the GIS link function which links attribute and image information in the database for applying to infrastructure management and but as geospatial data for especially 3D GIS in urban areas.

  • PDF

Exploring the Combined Use of LiDAR and Augmented Reality for Enhanced Vertical and Horizontal Measurements of Structural Frames (골조 수직, 수평 측정작업 시 LiDAR 및 AR 기술 적용방안 제시)

  • Park, Inae;Kim, Sangyong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.3
    • /
    • pp.273-284
    • /
    • 2023
  • This study is centered on the combined use of LiDAR(Light Detection and Ranging) and AR(Augmented Reality) technologies during vertical and horizontal frame measurements in construction projects. The intention is to enhance the quality control procedure, elevate accuracy, and curtail manual labor along with time expenditure. Present methods for accuracy inspection in frame construction often grapple with reliability concerns due to subjective interpretation and the scope for human error. This research recommends the application of LiDAR and AR technologies to counter these issues and augment the efficiency of the inspection process, along with facilitating the dissemination of results. The suggested technique involves the collection of 3D point cloud data of the frame utilizing LiDAR and leveraging this data for checks on construction accuracy. Furthermore, the inspection outcomes are fed into a BIM (Building Information Modeling) model, and the results are visualized via AR. Upon juxtaposing this methodology with the current approach, it is evident that it offers benefits in terms of objective inspection, speed, precise result sharing, and potential enhancements to the overall quality and productivity of construction projects.