• 제목/요약/키워드: Building Material Information

Search Result 274, Processing Time 0.024 seconds

BIM-BASED TIME SERIES COST MODEL FOR BUILDING PROJECTS: FOCUSING ON MATERIAL PRICES

  • Sungjoo Hwang;Moonseo Park;Hyun-Soo Lee;Hyunsoo Kim
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.1-6
    • /
    • 2011
  • As large-scale building projects have recently increased for the residential, commercial and office facilities, construction costs for these projects have become a matter of great concern, due to their significant construction cost implications, as well as unpredictable market conditions and fluctuations in the rate of inflation during the projects' long-term construction periods. In particular, recent volatile fluctuations of construction material prices fueled such problems as cost forecasting. This research develops a time series model using the Box-Jenkins approach and material price time series data in Korea in order to forecast trends in the unit prices of required materials. Building information modeling (BIM) approaches are also used to analyze injection times of construction resources and to conduct quantity take-off so that total material prices can be forecast. To determine an optimal time series model for forecasting price trends, comparative analysis of predictability of tentative autoregressive integrated moving average (ARIMA) models is conducted. The proposed BIM-based time series forecasting model can help to deal with sudden changes in economic conditions by estimating material prices that correspond to resource injection times.

  • PDF

Development of Data Warehouse for Construction Material Management (건설공사 자재 관리를 위한 데이터 웨어하우스 개발)

  • Ryu, Han-Guk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.3
    • /
    • pp.319-325
    • /
    • 2011
  • During a construction project, construction managers must be provided with material information to help them to make decisions more efficiently without delaying the delivery of material. Construction work can be smoothly performed with the proper material supply. Construction duration depends on several material-related decisions, including the order, delivery, and allocation of material to the correct work location. Hence, it is worthwhile to introduce data warehouse techniques that generate subject-oriented and integrated data to construction material management. The data warehouse for construction material management can perform multidimensional analysis and then define KPIs (Key Performance Index) in order to provide construction managers with construction material information such as lead time, material delivery rate, material installation rate and so on. This research proposes a method of effectively facilitating large amounts of data in the operating systems during the construction management process. In other words, the proposed method can supply structured and multi-perspective material-related information using data warehouse techniques.

Material Auto-Transformation Plan using Steal House Method (스틸하우스 공법을 이용한 자재 자동 변환 방안)

  • Han, Jung-Soo;Kim, Gui-Jung
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.5
    • /
    • pp.25-31
    • /
    • 2011
  • In this paper, we propose virtual building construction plans. For this, we compose the construction materials with components and assemble components in pattern. When we change assembled constructions, we can design the building efficiently with patterns if the parts are selected. Also through information analysis of material components or patterns, we can provide information which is necessary to a reconstruction to the designer. Using steal house method, the assembly functions were comprised of a wall, a room, a window, a door, roof etc. Also We explained the materials automatic extraction method which applies steal house.

A Preliminary Study on the Establishment of Long-Life Housing Infill Information System (장수명주택 인필 정보시스템 구축에 관한 기초 연구)

  • Jung, Yoon-Hye;Hwang, EunKyoung;Kim, Eun-Young
    • KIEAE Journal
    • /
    • v.17 no.5
    • /
    • pp.51-59
    • /
    • 2017
  • Purpose: This study aims to set up the classification system for providing infill information and draw detailed infill information required by suppliers, thereby promoting the revitalization of long-life housing and utilizing such information as preliminary data for establishing web system, on which infill information required by users in the long-life housing design process are available. Method: For the method of study, the infill information classification system and detailed information were drawn through the analysis of existing building material information systems; and the survey targeting working-level personnel was carried out in order to verify the drawn information system. The results of this study can be summarized as follows. First, the hierarchical classification system (scheme) was selected by quoting the classification system by material type as infill type, after analyzing existing DB information systems and drawing the hierarchical classification system for infill. Second, the comparative analysis between infill was available to users for the detailed infill information of long-life housing, and the essential information and general information were selected for differentiating information. Results: First, the hierarchical classification system (scheme) was selected by quoting the classification system by material type as infill type, after analyzing existing DB information systems and drawing the hierarchical classification system for infill. Second, the comparative analysis between infill was available to users for the detailed infill information of long-life housing, and the essential information and general information were selected for differentiating information. Third, only approximately 30% of the survey respondents recognized the infill of long-life housing, but they did not recognize its difference from existing building materials. Fourth, through the analysis of paths to obtain infill information of long-life housing, it was confirmed that infill information was obtained mostly through books and research papers regarding long-life housing, followed by the existing information systems. The significance of the study lies in that it is differentiated from the previous information system as the information system specialized in the infill of long-life housing was established, and can be used as a measure to revitalize long-life housing market.

A Study on the BIM Application for Establishment of the Repair and Replacement Cycle of Long-Life Housing (장수명 주택의 수선교체주기 설정을 위한 BIM활용에 관한 연구)

  • Jeong, Soo-Jin;Park, Jung-Lo;Kim, Ju-Hyung;Kim, Jae-Jun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.147-148
    • /
    • 2011
  • This study applied BIM(Building Information Modeling) technology for Long-life Housing within exterior, interior and building equipment. There has many changes and depression infill material after construction. Therefore to understand establishment of repair and replacement cycle is necessity. In addition, the method of classification is necessary because of construction equipment efficiency. On this study, we will find how can we manage them and establish the repair and repairment cycle by applying BIM technology.

  • PDF

SUSTAINABLE AND ENVIRONMENTALLY RESPONSIBLE DESIGN USING BIM: A CASE STUDY OF A RESIDENTIAL PROJECT

  • Hyunjoo Kim;Kwok K. Tam
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.84-87
    • /
    • 2011
  • This paper describes the application of the three sustainable design elements for a residential project in the county of Los Angeles, USA. The first design element is the green building design in which a base model will be created using the Autodesk REVIT MEP program for the analysis by Building Information Modeling (BIM) for the energy analysis modeling process to determine the energy savings for each of the recommended design features. The second element is the Low Impact Development design for the site design using specialty material and structural devices for infiltration and recycling of storm water for reuse. The third element is the application of drought tolerant plant species in the site's landscaping design as a means to conserve water. The construction cost associated with the application of these three elements will be reviewed to determine the practicality and effectiveness of this sustainable design approach.

  • PDF

A Proposal of Life Cycle CO2 Assessment Techniques for Building in Construction Stage by BIM LOD (건설단계 BIM을 이용한 건축물의 전 과정 CO2 평가 기법 제안에 관한 연구)

  • Bang, Jun-Sik;Tae, Sung-Ho;Roh, Seung-Jun;Keum, Won-Seok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.53-54
    • /
    • 2012
  • This study is aimed at utilizing LCA processor with BIM LOD, eliciting the problems of the existing environmental assessment by constructing the database for environmental values of green buildings. For these objects, environmental load database of BIM construction material and evaluation process are presented, after matching BIM family based environmental load database which is available during evaluation stage, input-output tables and Korea LCI database to standard item code of public procurement service. It is a important factor in environmental assessment of building to develop database unit of standard item code for BIM and construction material. Thus, the results of this study are expected to provide basic data for improving effectiveness of construction through BIM based environmental load evaluation database. Furthermore, the provided environmental load database unit for construction material is considered to be available as basic information for BIM study by suggesting a processor connecting BIM with LCA and along with this, continuous examination on the connection process is needed.

  • PDF

Interface Implementation for Steel-House Design (스틸하우스 설계를 위한 인터페이스 구현)

  • Han, Jung-Soo;Kim, Gui-Jung
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.7
    • /
    • pp.497-507
    • /
    • 2011
  • This paper develops the steel-house design interface that helps make building design effectively done by constructing building materials as components and assembling them as patterns. It also aims to develop the Flexible Building Design System that supports a technology which makes change of constructing easy and reduces the cost effectively through a simulation of building design like design, analysis, change information, etc., by grafting the virtual building technology into the process of building. It especially is possible for a designer and user to change a building easily by using patterns and according to the change, pattern information of materials needed and the plans of the building are made automatically. Kin-search that can be happened through personal proficiency or knowledge visualization is also the reason why the technology should be embodied.

A Study on a Database Management System for Health-friendly Building Materials (건강친화형 건축자재의 DB화 연구 - 실내마감재를 중심으로 -)

  • Kwon, Gi-Deoc;Lee, Dong-Hoon;Kim, Sun-Kuk
    • KIEAE Journal
    • /
    • v.9 no.6
    • /
    • pp.3-11
    • /
    • 2009
  • Building materials have a great impact on the health of a building's occupants. Thus, it is imperative that their health-related properties be taken into during the course of construction project. Unfortunately, no current database system exists that can provide information on the health performance of building materials at each stage of construction project management, from planning and design to building and maintenance. therefore, an inordinate amount of time and effort is required to choose the right health-friendly materials(DBHM). To solve this problem, this study aims at building a database management system for health-friendly building materials. It analyzes the health-related properties and performance of various materials, and proposes a database structure and operation algorithm. The system proposed in this study is expected to contribute to the objective evaluation of health-friendly building materials through the accumulation of relevant data.

Layout evaluation of building outrigger truss by using material topology optimization

  • Lee, Dongkyu;Shin, Soomi;Lee, Jaehong;Lee, Kihak
    • Steel and Composite Structures
    • /
    • v.19 no.2
    • /
    • pp.263-275
    • /
    • 2015
  • This study presents conceptual information of newly optimized shapes and connectivity of the so-called outrigger truss system for modern tall buildings that resists lateral loads induced by wind and earthquake forces. In practice, the outrigger truss consists of triangular or Vierendeel types to stiffen tall buildings, and the decision of outrigger design has been qualitatively achieved by only engineers' experience and intuition, including information of structural behaviors, although outrigger shapes and the member's connectivity absolutely affect building stiffness, the input of material, construction ability and so on. Therefore the design of outrigger trusses needs to be measured and determined according to scientific proofs like reliable optimal design tools. In this study, at first the shape and connectivity of an outrigger truss system are visually evaluated by using a conceptual design tool of the classical topology optimization method, and then are quantitatively investigated with respect to a structural safety as stiffness, an economical aspect as material quantity, and construction characteristics as the number of member connection. Numerical applications are studied to verify the effectiveness of the proposed design process to generate a new shape and connectivity of the outrigger for both static and dynamic responses.