• Title/Summary/Keyword: Building Integrated PV

Search Result 116, Processing Time 0.025 seconds

Efficiency Improvement for Building Integrated Photovoltaic Applied to High-rise Building (고층 빌딩에 적용되는 빌딩통합형 태양광패널 효율성 개선방안)

  • Lee, Do-Hyun;Ahn, Ihn-Seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.1
    • /
    • pp.71-78
    • /
    • 2022
  • With the advent of cutting-edge technology, renewable energy is significantly considered as alternative resources to supply electric power. However, many barriers such as energy intermittency, high initial installation cost, and low-efficiency generation challenged building new infrastructure with clean energy. Efforts reducing greenhouse gas emissions and reliance on fossil fuels resulted in the decentralization of power generation like distributed energy resource (DER). This paper is to introduce and evaluate the feasibility of building-integrated photovoltaics (BIPV) in a high-rise building in Ulsan. To optimize BIPV, a variety of methods to minimize efficiency decrease and maximize electric power generation after installing BIPV on the building's facade are suggested. The variables causing power losses are analyzed. By utilizing System Advisor Model (SAM), actual power generated from solar panels is measured by Thin-film PV, Mono-crystalline PV, and Poly-crystalline PV.

The Output Characteristics of 3kW BIPV System (3kW 건물일체형 태양광발전시스템의 출력특성)

  • Kim, Ji-Hoon;Kim, Pyouug-Ho;Lim, Yang-Su;Cho, Geum-Bae;Baek, Hyung-Lae;Oh, Geum-Gon
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.471-474
    • /
    • 2006
  • BIPV(Building Integrated PV) system can expect dual effects that reduce expenses for establishment of PV system by adding new function as outer covering material of building expect producing the electricity. But, there are many generation differences according to the exterior environmental facts(solar cell away, design and installation condition of interactive inverter system) Therefore, it is difficult to optimum design. Consequently in advance design system, we experiment 3kW BIPV(Building Integrated PV) generation. We concrete PV system efficient application of variable. BIPV system that is proposed in this paper, was established in Solar Energy research center of Chosun University, composed with system. This research is a basic study for application of building integrated photovoltaic system for builing.

  • PDF

A Study on the Integrated Prefab Building Materials Depending on the Cooling Type of PV Mocdule Backside (태양전지모듈 후면의 냉각조건에 따른 조립식 건축자재와 일체화에 관한 연구)

  • Yi So-Mi;Lee Yong-Ho;Hong Sung-Min
    • New & Renewable Energy
    • /
    • v.2 no.2 s.6
    • /
    • pp.9-15
    • /
    • 2006
  • The application of photovoltaics into building as integrated building components has been paid more attention worldwide. Photovoltaics or solar electric modules are solid state devices, directly converting solar radiation into electricity; the process does not require fuel and any moving parts, and produce no pollutants. And the prefab building method is very effective because the pre- manufactured building components is simply assembled to making up buildings in the construction fields especially the sandwich panel. So, the purpose of this research is to integrated prefab building materials depending on the cooling type of PV modules. It is concluded that the prediction of BIPV system's performance should be based on the more accurate PV module temperature. From the basis of these results on the correlation of temperature and irradiation were obtained.

  • PDF

A Study on the Integrated Prefab Building Materials Depending on the Cooling Type of PV Module Backside (태양전지모듈 후면의 냉각조건에 따른 조립식 건축자재와 일체화에 관한 연구)

  • Yi, So-Mi;Lee, Yong-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.138-141
    • /
    • 2006
  • The application of photovoltaics into building as integrated building components has been paid more attention worldwide. Photovoltaics or solar electric modules are solid state devices, directly converting solar radiation into electricity; the process does not require fuel and any moving parts, and produce no pollutants. And the prefab building method is very effective because the pre-manufactured building components is simply assembled to making up buildings in the construction fields especially the sandwich panel. So, the purpose of this research is to integrated prefab building materials depending on the cooling type of PV modules. It is concluded that the prediction of BIPV system's performance should be based on the more accurate PV module temperature. From the basis of these results on the correlation of temperature and irradiation were obtained.

  • PDF

A Study on the Application Method of Photovoltaic in Building (PV의 건축물 적용기법에 관한 연구)

  • Lee, E.J.;Kim, H.S.
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.2
    • /
    • pp.1-10
    • /
    • 2002
  • This study is a study on the building integrated method of Photovoltaic. It was analyzed into a basic installation condition and an integrated form in this study. And it was confirmed through the 3D simulation & drawing work of an integrated situation to the real domestic building. The Photovoltaic installation of the country to an optimal efficiency for the year must be installed to the due south with an angle of thirty degrees. And also a module spacing must be more than doubled from the bottom to the top of module to prevent from efficiency falling by a shadow of photovoltaic module in a roof setting of flat roof. If Photovoltaic module is an adequate material that is a basic requirement as a building's finishing material, it's not only an efficiency of alternation with an existing finishing material but also a building's design element.

Experimental Study on the Thermal Effect of BIPV Modules Depending on the Ventilation Type of PV Module Backside (후면 환기조건에 따른 건물외피용 태양광발전(BIPV) 모듈의 열적 영향에 관한 실험연구)

  • Yoon, Jong-Ho;Kim, Jae-Ung
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.1
    • /
    • pp.81-89
    • /
    • 2006
  • Building integrated photovoltaic (BIPV) system operates as a multi-functional building construction material. They not only produce electricity, but also are building integral components such as facade, roof, window and shading device. On the other hands lots of architectural considerations should be reflected such as Installation position, shading, temperature effect and so on. As PV modules function like building envelope in BIPV, combined thermal and PV performance should be simultaneously evaluated This study is on the combined thermal and PV performance evaluation of BIPV modules. The purpose of this study is to investigate a temperature effect of PV module depending on the ventilation type of PV module backside. Test cell experiment was performed to identify the thermal and power effect of PV modules. Measurement results on the correlation of temperature and power generation were obtained. Those results can be utilized for the development of optimal BIPV installation details in the very early design stage.

A Case Study on the Power Performance Characteristics of Building Integrated PV System with Amorphous Silicon Transparent Solar Cells (비정질 실리콘 투과형 태양전지를 적용한 BIPV 시스템 발전 성능에 관한 사례 연구)

  • Jung, Sun-Mi;Song, Jong-Hwa;Lee, Sung-Jin;Yoon, Jong-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.49-52
    • /
    • 2009
  • Practical building integrated photovoltaic system built by Kolon E&C has been monitored and evaluated with respect to power generation, which was installed in Deokpyeong Eco Service Area in Deokpyeong, Gyeonggi, Korea. The amorphous silicon transparent PV module in this BIPV system has 44Wp in power output per unit module and 10% of transmittance with the unit dimension with $980mm{\times}950mm$. The BIPV system was applied as the skylight in the main entrance of the building. This study provided the database for the practical application of the transparent thin-film PV module for BIPV system through 11 month monitoring as well as various statistical analyses such as monthly power output and insolation. Average monthly power output of the system was 52.9kWh/kWp/month which is a 60% of power output of the previously reported data obtained under $30^{\circ}$of an inclined PV module facing south(azimuth=0). This lower power output can be explained by the installation condition of the building facing east, west and south, which was resulted from the influence of azimuth.

  • PDF

Software Development on Power and Economic Analysis of Photovoltaic System for Building Application (건물용 태양광발전 시스템 성능 및 경제성 평가 프로그램 개발 연구)

  • Yoon, Jong-Ho;Shin, U-Cheul;Park, Jae-Wan
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • The aim of this study is to develop the photovoltaic simulation program, called SimPV, which can Predict hourly based power generation of various PV modules and conduct an intensive economic analysis with Korean situation. To establish the reliability of the PV simulation results, we adopt the PV calculation algorithm of TRNSYS program of which verification has already well approved. Extensive database for hourly weather data of Korean 16 cities, engineering data for PV system and building load profiles are established. Case study on the 2.5kW roof integrated PV system and economic analysis are presented with the developed program.

Performance Evaluation of BIPV Systems Applied in School Buildings (학교 건축에 대한 BIPV시스템의 성능 평가)

  • Park, Kyung-Eun;Kim, Jin-Hee;Kim, Jun-Tae
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.11 no.5
    • /
    • pp.14-23
    • /
    • 2004
  • Building-integrated photovoltaic(BIPV) systems can operate as a multi-functional building components, which generates electricity and serves as part of building envelope. It can be regarded as a new architectural elements, adding to the building's aesthetics. Besides of these benefits, the application of PV systems into school buildings tends to play an important role in energy education to students. In this context, this study aims to analyse the applicability of PV systems into school buildings. For an existing school building, four types of BIPV designs were developed; rooftops, wall-attached, wall-mounted with angle, and sunshading device. Based on energy modeling of those BIPV systems, the whole 60.1kWp rated PV installation is expected to yield about 65.6MWh of electricity, that is about 50% more than the annual electricity consumption of the school, 44MWh. It was also found that the applicability of the PV systems into the school building was very high, and the rooftop systems with the optimized angle was the most efficient in energy production, followed by sunshading, wall-mounted with angle and wall-attached. It concludes that school buildings have a reasonable potential to apply PV systems in the aspects of building elements and electricity production.