• Title/Summary/Keyword: Building Height Control

Search Result 110, Processing Time 0.028 seconds

The study on a high efficiency PV tracking system (고효율 태양광 위치 추적 장치에 관한 연구)

  • Lee, Sang-Hun;Lee, Dong-Hee;Park, Sung-Jun;Ahn, Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.86-88
    • /
    • 2007
  • In solar power system, the height and azimuth of the sun are important parameters which control generated power magnitude. The tracking method that controls the daily generation magnitude according to latitude and longitude using the two axles is often used in the existing sunlight tracking system today. In this two-axle PV track control system, the self-load is concentrated on one FRAME. It is influenced of the regular load, snow load and the wind load, etc. It is difficult to set up the system in the conventional building. This research is a development about the small-scale economy track device of independent load-dispersing solar generation system. The position tracking algorithm is through the new coordinates transformation calculating the height and azimuth of the sun.

  • PDF

Evaluation of GPS and Totalstation Surveying for University Facilities Mapping (GPS 및 토탈스테이션을 이용한 대학시설물 현황측량의 성과분석)

  • 박병욱;이대근;서상일
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.10a
    • /
    • pp.43-48
    • /
    • 2003
  • This study presents the detailed methods for university facilities mapping using GPS and totalstation. In the control survey by GPS network adjustment, the level of significance for the height value of fourth order triangulation stations was estimated about loom. The accuracy analysis of height determination by totalstation for the traverse points showed that the RMSE came out 9mm to the basis of direct leveling, so it indicated that trigonometric leveling by totalstation was correct comparatively. For GPS/RTK method, the result of accuracy analysis about traverse points showed that the RMSE came out 33㎜ in horizontal location to the basis of totalstation's outcome and 15㎜ in height value to the basis of direct leveling. In the construction survey, GPS/RTK surveying is quicker and more economical than totalstation surveying in the feasible areas of GPS surveying, but there were many impossible areas lot GPS/RTK surveying by the obstacles like a building.

  • PDF

Stability analysis of settled goaf with two-layer coal seams under building load-A case study in China

  • Yao, Lu;Ning, Jiang;Changxiang, Wang;Meng, Zhang;Dezhi, Kong;Haiyang, Pan
    • Geomechanics and Engineering
    • /
    • v.32 no.3
    • /
    • pp.245-254
    • /
    • 2023
  • Through qualitative analysis and quantitative analysis, the contradictory conclusions about the stability of the settled goaf with two-layer coal seams subject to building load were obtained. Therefore, it is necessary to combine the additional stress method and numerical simulation to further analyze the foundation stability. Through borehole analysis and empirical formula analogy, the height of water-conducting fracture zone in No.4 coal and No.9 coal were obtained, providing the calculation range of water-conducting fracture zone for numerical simulation. To ensure the accuracy of the elastic modulus of broken gangue, the stress-strain curve were obtained by broken gangue compression test in dried state of No.4 coal seam and in soaking state of No.9 coal seam. To ensure the rationality of the numerical simulation results, the actual measured subsidence data were retrieved by numerical simulation. FISH language was used to analyze the maximum building load on the surface and determine the influence depth of building load on the foundation. The critical building load was 0.16 MPa of No.4 settled goaf and was 1.6 MPa of No.9 settled goaf. The additional stress affected the water-conducting fracture zone obviously, resulted in the subsidence of water-conducting fracture zone was greater than that of bending subsidence zone. In this paper, the additional stress method was analyzed by numerical simulation method, which can provide a new analysis method for the treatment and utilization of the settled goaf.

Optimum position for outriggers of different materials in a high- rise building

  • Nikhil Y. Mithbhakare;Popat D. Kumbhar
    • Earthquakes and Structures
    • /
    • v.25 no.5
    • /
    • pp.359-367
    • /
    • 2023
  • High-rise structures are considered as symbols of economic power and leadership. Developing countries like India are also emerging as centers for new high-rise buildings (HRB). As the land is expensive and scarce everywhere, construction of tall buildings becomes the best solution to resolve the problem. But, as building's height increases, its stiffness reduces making it more susceptible to vibrations due to wind and earthquake forces. Several systems are available to control vibrations or deflections; however, outrigger systems are considered to be the most effective systems in improving lateral stiffness and overall stability of HRB. In this paper, a 42-storey RCC HRB is analyzed to determine the optimum position of outriggers of different materials. The linear static analysis of the building is performed with and without the provision of virtual outriggers of reinforced cement concrete (RCC) and pre-stressed concrete (PSC) at different storey levels by response spectrum method using finite element based Extended3D Analysis of building System (ETABS) software for determining responses viz. storey displacement, base shear and storey drift for individual models. The maximum allowable limit and percentage variations in earthquake responses are verified using the guidelines of Indian seismic codes. Results indicate that the outriggers contribute in significantly reducing the storey displacement and storey drift up to 28% and 20% respectively. Also, it is observed that the PSC outriggers are found to be more efficient over RCC outriggers. The optimum location of both types of outriggers is found to be at the mid height of building.

A study on the suitable of building size in district units plan (지구단위계획(地區單位計劃)에서 건축(建築) 규모설정(規模設定)에 관한 연구(硏究))

  • Lee, Won-Geun;Lee, Jae-Kook;Do, Gyu-Hwan
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.3 no.1
    • /
    • pp.39-49
    • /
    • 2003
  • The height provisions, by the urban planning, describe the hightest height per width division, also define oblique line limitation by road without mentioning the highest per width division. Therefore this study will be a basic model for the standard of measuring the highest height per width division analysizing the propriety of current standard of oblique limitation. This technique is prepared to prevent the confusion and to complements the existing planning method. Therefore, it takes more time to establish this new method and to apply it to the existing condition. This study reviewed density control in District Units Plan, based on the guidelines of density, which included height, ratio of total floor to ground area, and land distribution. This study aims to provide efficient analysis by using current oblique limitation provisions Thus, proving the area rations of general residential areas are decreasing. Since the purpose of the District Units Plan is to avoid confusion and help ease the existing problematic conditions which have risen from the two above-mentioned conventional systems, further observation and research on these areas are necessary.

  • PDF

Three-dimensional numerical simulation of turbulent flow around two high-rise buildings in proximity

  • Liu, Min-Shan
    • Wind and Structures
    • /
    • v.1 no.3
    • /
    • pp.271-284
    • /
    • 1998
  • This paper uses the numerical simulation to investigate the interference effect of 3-D turbulent flow around two high rise buildings in proximity at the different relative heights, gaps, and wind velocities. The computer program used to carry out the simulation is based on the control volume method and the SIMPLEST algorithm. The ${\kappa}-{\varepsilon}$ model was used to simulate turbulence effects. Since the contracted flow between two adjacent buildings enhances the strength of vortex shedding from the object building, the pressure coefficient on each side wall of the object building is generally increased by the presence of apposed building. The effect is increased as the relative height or the gap between the two buildings decreases. The velocity on the vertical center line between two buildings is about 1.4 to 1.5 times the upstream wind velocity.

A study on the Structure and Design Concept of Asymmetrical Building with 4 Purlins in the Joseon Dynasty (조선시대 측4량가 건축의 구조와 특징)

  • Kim, Bue-Dyel;Lee, Jong-Seo
    • Journal of architectural history
    • /
    • v.28 no.6
    • /
    • pp.7-18
    • /
    • 2019
  • This study is to find out the design concept of asymmetrical building with 4 purlins mainly in Sungkyunkwan(Confucian Shrines), Changgyeonggung palace and Changdeokgung palace The results are as follows: First, asymmetrical building with 4 purlins has the same height pillars, which was useful to control the side lenght and put a higher pillar without limit. Second, the side length of the asymmetrical building with 4 purlins is between 12 to 14 Ja[尺]. It's relatively longer than the minimum length(12 Ja) of 5 purlins architecture seen in later Joseon dynasty. Third, asymmetrical building with 4 purlins was not an anomalous structure when compared to 3 purlins and 5 purlins. It was actually a traditional style, unlike the current architectural recognition nowadays, which mainly focused on the balanced roof structure. These examples show that the architectures in Early Joseon dynasty were planned and constructed first according to the plane division that fit in a specific use or space.

A Study on the Feature of the Dimension Plan at Happy Village - Focused on the Comparative Traditional House in Chonnam Province - (전라남도 행복마을 가옥의 치수계획 특징에 관한 연구 -전라남도 전통가옥과의 비교를 중심으로-)

  • Sung, Dae-Chul;Shin, Woong-Ju
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.14 no.4
    • /
    • pp.135-142
    • /
    • 2012
  • This study is aimed to investigate the dimension feature of the plane about the economic type farming village Korean-style house progressed in the Chonnam province and Longitudinal feature and tries to reveal this feature through the comparing analysis with the traditional house positioned in the Chonnam province. This result is as follows. First, the main feature in plane is the setting up the column interval in front when comparing the house of Happy Village and traditional house. In case house of the Happy Village, after firstly fixed the limited scales, sizes are determined, this is due to control the set up in the post interval in this in range. Second, in the case of the traditional houses, 0.68 ratio of the building height about the side length and 0.19 ratio of the eaves extrusion about the side length are consistent ratio about dimensions. However, there is no consistent ratio or fixed law, the various dimensions show up in case of the house of Happy Village. It will be inevitable that space of the post increases for the convenience of life of the modern people. However, it has to sublate and to disregard as the identity of the morphological shown up in the Korean-style house the more various construction standards will need to be presented.

Mitigation of seismic pounding between two L-shape in plan high-rise buildings considering SSI effect

  • Ahmed Abdelraheem Farghaly;Denise-Penelope N. Kontoni
    • Coupled systems mechanics
    • /
    • v.12 no.3
    • /
    • pp.277-295
    • /
    • 2023
  • Unsymmetrical high-rise buildings (HRBs) subjected to earthquake represent a difficult challenge to structural engineering, especially taking into consideration the effect of soil-structure interaction (SSI). L-shape in plan HRBs suffer from big straining actions when are subjected to an earthquake (in x- or y-direction, or both x- and y- directions). Additionally, the disastrous effect of seismic pounding may appear between two adjacent unsymmetrical HRBs. For two unsymmetrical L-shape in plan HRBs subjected to earthquake in three different direction cases (x, y, or both), including the SSI effect, different methods are investigated to mitigate the seismic pounding and thus protect these types of structures under the earthquake effect. The most effective technique to mitigate the seismic pounding and help in seismically protecting these adjacent HRBs is found herein to be the use of a combination of pounding tuned mass dampers (PTMDs) all over the height (at the connection points) together with tuned mass dampers (TMDs) on the top of both buildings.

A Study on the Effectiveness to the Life Safety by Enlarging Smoke Vent Size and/or Sprinklered System (배연창 크기와 스프링클러 작동이 인명안전에 미치는 영향 연구)

  • Kim, Hak-Joong;Park, Yong-Hwan;Lim, Choe-Hyun;Kim, Bum-Kyu
    • Fire Science and Engineering
    • /
    • v.24 no.2
    • /
    • pp.133-138
    • /
    • 2010
  • Recently, evacuation safety of a resident of building become the major concern, because building has been higher and more complicated. Buildings in Korea should install the natural smoke venting or mechanical smoke exhaust equipment according to the building law. The smoke control is the most important to guarantee the evacuation safety. This study evaluate the influence to the height and temperature of smoke layer by enlarging smoke vent size and operating sprinkler system using CFAST (Version 6). Smoke venting size is larger, the effect to height and temperature of smoke layer is increased in below 5 MW fire. But, the correlation of these is decreased in above 10 MW fire. The case that opened smoke vent and sprinklered are applied, life safety criteria are satisfied regardless of fire size. After design the fire scenario according to the service and size of building. Install the smoke vent suitable for the fire size and verify that by experiment or simulation.