LiDAR data is very large, which contains an amount of redundant information. The information not only takes up a lot of storage space but also brings much inconvenience to the LIDAR data transmission and application. Therefore, a simplified method was proposed for LiDAR data based on quad-tree structure in this paper. The boundary contour lines of the buildings are displayed as building extraction. Experimental results show that the method is efficient for point's simplification according to the rule of mapping.
대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
/
pp.530-535
/
2002
An approach for quickly updating GIS building data using high resolution remotely sensed data is proposed in this paper. High resolution remotely sensed data could be aerial photographs, satellite images and airborne laser scanning data. Data from different types of sensors are integrated in building extraction. Based on the extracted buildings and the outdated GIS database, the change-detection-template can be automatically created. Then, GIS building data can be fast updated by semiautomatically processing the change-detection-temp late. It is demonstrated that this approach is quick, effective and applicable.
Laser scanning is a new technology for obtaining Digital Surface Models(DSM) of the earth surface.It is a fast method for sampling the earth surface with high density and high point accuracy. This paper is for buildings extraction from LiDAR points data. The core part of building construction is based on a parameters filter for distinguishing between terrain and non-terrain laser points. The 3D geometrical properties of the building facades are obtained based on plane fitting using least-squares adjustment. The reconstruction part of the procedure is based on the adjacency among the roof facades. Primitive extraction and facade intersections are used for building reconstruction. For overcome the difficulty just reconstruct of laser points data used with digital camera images. Also, 3D buildings of city area reconstructed using digital map. Finally, In this paper show 3D building Modeling using digital map and LiDAR data.
In recent years, LiDAR technology has been becoming more popular and important. Its applications are completely replacing the traditional remote sensing technique. One of these applications is creating Digital City Models in urban areas, which is essential for many others such as disaster management, cartographic mapping, simulation of new buildings, updating and keeping cadastral data. In most of these cases the building outlines is the primary feature of interest. In this paper, a method of extracting building outlines from LiDAR data will be performed.
Airborne LIDAR (Light Detection and Ranging) technology has reached a degree of the required accuracy in mapping professions, and advanced LIDAR systems are becoming increasingly common in the various fields of application. LiDAR data constitute an excellent source of information for reconstructing the Earth's surface due to capability of rapid and dense 3D spatial data acquisition with high accuracy. However, organizing the LIDAR data and extracting information from the data are difficult tasks because LIDAR data are composed of randomly distributed point clouds and do not provide sufficient semantic information. The main reason for this difficulty in processing LIDAR data is that the data provide only irregularly spaced point coordinates without topological and relational information among the points. This study introduces an efficient and robust method for automatic extraction of building footprints using airborne LIDAR data. The proposed method separates ground and non-ground data based on the histogram analysis and then rearranges the building boundary points using convex hull algorithm to extract building footprints. The method was implemented to LIDAR data of the heavily built-up area. Experimental results showed the feasibility and efficiency of the proposed method for automatic producing building layers of the large scale digital maps and 3D building reconstruction.
In this paper, in order to maximize the input process efficiency of the building energy simulation field, the authors developed the automatic extraction module of spatial information based BIM geometry information. Existing research or software extracts geometry information based on object information, but it can not be used in the field of energy simulation because it is inconsistent with the geometry information of the object constituting the thermal zone of the actual building model. Especially, IFC-based geometry information extraction module is needed to link with other architectural fields from the viewpoint of reuse of building information. The study method is as follows. (1) Grasp the category and attribute information to be extracted for energy simulation and Analyze the IFC structure based on spatial information (2) Design the algorithm for extracting and reprocessing information for energy simulation from IFC file (use programming language Phython) (3) Develop the module that generates a geometry information database based on spatial information using reprocessed information (4) Verify the accuracy of the development module. In this paper, the reprocessed information can be directly used for energy simulation and it can be widely used regardless of the kind of energy simulation software because it is provided in database format. Therefore, it is expected that the energy simulation process efficiency in actual practice can be maximized.
본 논문에서는 칼라 세그멘테이션, 에지 정합, 지각적 그룹핑 등을 사용하여 Lidar 데이터와 광학 영상의 정보 융합에 의한 새로운 구조물 검출 및 복원 알고리듬을 제안한다. 제안하는 알고리듬은 두 가지 단계로 구성된다. 첫 번째로, 항공 Lidar 데이터로부터 초기 구조물 추출 결과와 영상의 칼라 세그멘테이션 결과를 사용하여 coarse building boundary를 추출한다. 두 번째로, coarse building boundary와 에지 정합 및 지각적 그룹핑에 의해 보다 정밀한 구조물 추출 결과인 precise building boundary를 추출한다. 본 논문에서 제안하는 알고리듬은 보다 신뢰성 있는 구조물 검출을 위해, 광학 영상으로부터 칼라 정보를 사용한다. 이를 통해, Lidar에 의해 획득된 붕괴된 형태의 구조물 외곽선을 보완한다. 또한, 인공지물의 특징으로서, 에지의 직선성 및 다면체 형태의 지붕모양을 반영함으로써 신뢰성 있는 구조물을 검출한다. 다중 센서 데이터에 대한 실험은 제안하는 알고리듬이 Lidar 단일 센서 결과에 비해 정밀하고 신뢰성 있는 결과를 보여준다.
고해상도 위성영상의 제공이 증가함에 따라 위성영상의 위치정확도 향상이 요구되고 있다. 이를 위해 기복변위를 제거하고 인공지물의 정위가 수립된 정사영상 생성의 중요성이 높아지고 있다. 본 논문에서는 기존에 구축된 건물 높이 데이터베이스를 이용하여 원본 위성영상에서의 건물 옥상면과 건물포함영역을 자동으로 추출하였다. 이후 추출된 건물 옥상면을 정위치 편집하여 건물 정위 레이어(layer)를 생성하였다. 추출된 건물포함영역을 이용하여 위성영상에서 건물영역을 공백 처리하여 비건물 정위 레이어를 생성하였다. 이후, 실감정사 건물레이어와 실감정사 비건물레이어를 중첩하여 최종 정사영상을 제작하였다. 본 연구에서 제안한 방법은 KOMPSAT-3 및 KOMPSAT-3A 위성영상을 이용해 실험하였으며, 실험 결과를 수치지형도와 중첩하여 검증을 수행하였다. 실험결과 건물 정위 레이어는 0.4 m의 위치 오차를 가지는 것으로 나타났다. 제안 방법을 통해 도심지역에 대한 자동 실감정사영상 생성의 가능성을 확인하였다.
3차원 도시 모델은 여러 가지 인공구조물, 자연 지물 요소로 구성되며, 이 중에서 대부분을 차지하고 있는 것은 건물이다. 따라서 건물을 얼마나 정확하고 신속하게 추출하여 기존의 데이터베이스를 갱신할 수 있느냐는 중요한 문제라 할 수 있다. 이러한 문제의 해결 방안으로 DTM으로부터 추출한 건물 정보로 DTM을 재구성한다면, 이를 하나의 3차원 도시 모델로 이용할 수 있다. 따라서 본 연구는 고해상도 DTM과 항공사진의 edge 정보에 수리형태학(mathematical morphology) 및 영상분할 기법 등을 적용하여 건물의 윤곽선 및 높이 정보를 추출하는 것을 목적으로 한다. 본 연구의 결과, 수리형태학의 opening 연산을 통해 건물의 추출이 가능하였으며, 항공사진에서 추출한 edge 정보를 이용하여 건물 추출의 정확도를 향상시킬 수 있었다.
This paper presents an algorithm that automatically extracts buildings among many different features on the earth surface by fusing LIDAR data with panchromatic aerial images. The proposed algorithm consists of three stages such as point level process, polygon level process, parameter space level process. At the first stage, we eliminate gross errors and apply a local maxima filter to detect building candidate points from the raw laser scanning data. After then, a grouping procedure is performed for segmenting raw LIDAR data and the segmented LIDAR data is polygonized by the encasing polygon algorithm developed in the research. At the second stage, we eliminate non-building polygons using several constraints such as area and circularity. At the last stage, all the polygons generated at the second stage are projected onto the aerial stereo images through collinearity condition equations. Finally, we fuse the projected encasing polygons with edges detected by image processing for refining the building segments. The experimental results showed that the RMSEs of building corners in X, Y and Z were ${\pm}$8.1cm, ${\pm}$24.7cm, ${\pm}$35.9cm, respectively.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.