• Title/Summary/Keyword: Building Envelope Design

Search Result 89, Processing Time 0.037 seconds

Experimental Study on the Thermal Effect of BIPV Modules Depending on the Ventilation Type of PV Module Backside (후면 환기조건에 따른 건물외피용 태양광발전(BIPV) 모듈의 열적 영향에 관한 실험연구)

  • Yoon, Jong-Ho;Kim, Jae-Ung
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.1
    • /
    • pp.81-89
    • /
    • 2006
  • Building integrated photovoltaic (BIPV) system operates as a multi-functional building construction material. They not only produce electricity, but also are building integral components such as facade, roof, window and shading device. On the other hands lots of architectural considerations should be reflected such as Installation position, shading, temperature effect and so on. As PV modules function like building envelope in BIPV, combined thermal and PV performance should be simultaneously evaluated This study is on the combined thermal and PV performance evaluation of BIPV modules. The purpose of this study is to investigate a temperature effect of PV module depending on the ventilation type of PV module backside. Test cell experiment was performed to identify the thermal and power effect of PV modules. Measurement results on the correlation of temperature and power generation were obtained. Those results can be utilized for the development of optimal BIPV installation details in the very early design stage.

Analysis of Application Elements for improvement in the generated electric power performance of balcony BIPV System (발코니형 BIPV시스템의 발전성능 향상을 위한 적용요소기술 분석)

  • Kim Hyun-Il;Yu Gwon-Jong;Kang Gi-Hwan;So Jung-Hoon;Lee Kil-Song
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1483-1485
    • /
    • 2004
  • Photovoltaic(PV) technology is a popular part of building vocabulary. It can be used today on both existing and new buildings. Its use in the building envelope is very varied and open ways, such as roofing materials, facades, skylights and shading systems, for creative designers. So, to activate this systems demand appropriate sources of information, performance data of elements and design tools offering architects and designer. Therefore this paper describe application elements for BIPV system and then predict improvement in the generated electric power performance of balcony BIPV system.

  • PDF

Effect of building volume and opening size on fluctuating internal pressures

  • Ginger, John D.;Holmes, John D.;Kopp, Gregory A.
    • Wind and Structures
    • /
    • v.11 no.5
    • /
    • pp.361-376
    • /
    • 2008
  • This paper considers internal pressure fluctuations for a range of building volumes and dominant wall opening areas. The study recognizes that the air flow in and out of the dominant opening in the envelope generates Helmholtz resonance, which can amplify the internal pressure fluctuations compared to the external pressure, at the opening. Numerical methods were used to estimate fluctuating standard deviation and peak (i.e. design) internal pressures from full-scale measured external pressures. The ratios of standard deviation and peak internal pressures to the external pressures at a dominant windward wall opening of area, AW are presented in terms of the non-dimensional opening size to volume parameter, $S^*=(a_s/\bar{U}_h)^2(A_W^{3/2}/V_{Ie})$ where $a_s$ is the speed of sound, $\bar{U}_h$ is the mean wind speed at the top of the building and $V_{Ie}$ is the effective internal volume. The standard deviation of internal pressure exceeds the external pressures at the opening, for $S^*$ greater than about 0.75, showing increasing amplification with increasing $S^*$. The peak internal pressure can be expected to exceed the peak external pressure at the opening by 10% to 50%, for $S^*$ greater than about 5. A dominant leeward wall opening also produces similar fluctuating internal pressure characteristics.

The use and potential applications of point clouds in simulation of solar radiation for solar access in urban contexts

  • Alkadri, Miktha F.;Turrin, Michela;Sariyildiz, Sevil
    • Advances in Computational Design
    • /
    • v.3 no.4
    • /
    • pp.319-338
    • /
    • 2018
  • High-performing architecture should be designed by taking into account the mutual dependency between the new building and the local context. The performative architecture plays an important role to avert any unforeseen failures after the building has been built; particularly ones related to the microclimate impacts that affect the human comfort. The use of the concept of solar envelopes helps designers to construct the developable mass of the building design considering the solar access and the site obstruction. However, the current analysis method using solar envelopes lack in terms of integrating the detailed information of the existing context during the simulation process. In architectural design, often the current site modelling not only absent in preserving the complex geometry but also information on the surface characteristics. Currently, the emerging applications of point clouds offer a great possibility to overcome these limitations, since they include the attribute information such as XYZ as the position information and RGB as the color information. This study particularly presents a comparative analysis between the manually built 3D models and the models generated from the point cloud data. The modelling comparisons focus on the relevant factors of solar radiation and a set of simulation to calculate the performance indicators regarding selected portions of the models. The experimental results emphasize an introduction of the design approach and the dataset visibility of the 3D existing environments. This paper ultimately aims at improving the current architectural decision of support environment means, by increasing the correspondence between the digital models for performance analysis and the real environments (context of design) during the conceptual design phase.

A "Dynamic Form-Finding" Approach to Environmental-Performance Building Design

  • Yao, Jia-Wei;Lin, Yu-Qiong;Zheng, Jing-Yun;Yuan, Philip F.
    • International Journal of High-Rise Buildings
    • /
    • v.7 no.2
    • /
    • pp.145-151
    • /
    • 2018
  • Newly-designed high-rise buildings, both in China and abroad, have demonstrated new innovations from the creative concept to the creative method. from the creative concept to the creative method. At the same time, digital technology has enabled more design freedom in the vertical dimension. "Twisting" has gradually become the morphological choice of many city landmark buildings in recent years. The form seems more likely to be driven by the interaction of aesthetics and structural engineering. Environmental performance is often a secondary consideration; it is typically not simulated until the evaluation phase. Based on the research results of "DigitalFUTURE Shanghai 2017 Workshop - Wind Tunnel Visualization", an approach that can be employed by architects to design environmental-performance buildings during the early stages has been explored. The integration of a dynamic form-finding approach (DFFA) and programming transforms the complex relationship between architecture and environment into a dialogue of computer language and dynamic models. It allows the design to focus on the relationship between morphology and the surrounding environment, and is not limited to the envelope form itself. This new concept of DFFA in this research consists of three elements: 1) architectural form; 2) integration of wind tunnel and dynamic models; and 3) environmental response. The concept of wind tunnel testing integrated with a dynamic model fundamentally abandons the functional definition of the traditional static environment simulation analysis. Instead it is driven by integral environmental performance as the basic starting point of morphological generation.

Energy Performance and Cost Assessment for Implementing GroundSource Heat Pump System in Military Building (군사시설 내 지열 히트펌프 시스템 적용에 따른 에너지 성능과 비용 절감 효과 평가)

  • Byonghu Sohn;Kyung Joo Cho;Dong Woo Cho
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.18 no.4
    • /
    • pp.45-57
    • /
    • 2022
  • The Ministry of National Defense of the Republic of Korea is showing a lot of interest in net zero-energy buildings (NZEBs) to reduce energy consumption of military facilities and to promote green growth policy in military sector. The application of building passive technologies and renewable energies is essential to achieving NZEBs. This paper analyzed energy performance and energy cost on the conventional heating and cooling system (baseline scenario) and three different alternative scenarios (ALT 1, ALT 2 and ALT 3) applied in a hypothetical military building. A building modeling and simulation software (DesignBuilder V6.1) with EnergyPlus calculation engine was used to calculate the energy consumption for each scenario. Overall, when the GSHPs are applied to both space airconditioning and domestic hot water (DHW) production, Alt-2 and Alt-3, the amount of energy consumption for target building can be greatly reduced. In addition, when the building envelope performance is increased like Alt-3, the energy consumption can be further reduced. The annual energy cost analysis showed that the baseline was approximately 161 million KRW, while Alt-3 was approximately 33 million KRW. Therefore, it was analyzed that the initial construction cost increase could be recovered within about 6.7 years for ALT 3. The results of this study can help decision-makers to determine the optimal strategy for implementing GSHP systems in military buildings through energy performance and initial construction cost assessment.

Energy Performance and Operating Cost Assessment for Implementing Green Remodeling Technologies in a Detached House (단독주택 건물 그린리모델링에 따른 건물 에너지 성능과 운전비용 절감 효과 평가)

  • Byonghu Sohn;Su-In Lee;Jae-Sik Kang
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.19 no.4
    • /
    • pp.27-38
    • /
    • 2023
  • The Government the Republic of Korea is showing a lot of interest in net zero-energy buildings (NZEBs) to reduce energy consumption of buildings and to promote green growth policy in construction sector. The application of building passive technologies and renewable energies is essential to achieving NZEBs. Green remodeling reinforced the insulation of the exterior walls and roofs of the buildings and replaced high-efficiency windows and doors. In this study, the energy performance before and after green remodeling applied in a detached house was comparatively analyzed for baseline scenario and three different ones, ALT 1, ALT 2 and ALT 3. A building modeling and simulation software (DesignBuilder V7.0) with EnergyPlus (V9.4) calculation engine was used to calculate the energy demand and energy consumption for each scenario. Based on the calculation results of the building's energy demand for baseline, it was determined that the target building required more heating energy than cooling energy. The simulation results also showed that the implementation of building envelope performance improvement technologies (ALT 1) could notably decrease the heating energy consumption of the building. After the remodeling (ALT 1), the source energy consumption per unit floor area was assessed to be reduced by 65.2%, compared to prior remodeling of 338.7 kWh/m2 -y. Meanwhile, ALT 2 can achieve energy savings of 67.7% and ALT 3 can achieve savings of 73.1%. Following completion of the remodeling project, actual construction costs, and on-site measurements and verification results will be gathered and compared with the simulation results. Additionally, economic analysis including construction costs and payback period will be conducted using actual site data.

Insulation Performance Evaluation of Apartment Housing Bying a Three-Dimensional Steady State Simulation (3차원 정상상태 해석에 의한 공동주택 단열성능 평가 - TDR(온도상대비)을 중심으로 -)

  • Choi, Bo-Hye;Choi, Gyoung-Seok;Kang, Jae-Sik;Lee, Seung-Eon;Lee, Yong-Jun
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.730-735
    • /
    • 2009
  • The purpose of this study is to consider improvement performance to prevent condensation and draw the optimum insulation design method for building using simulation tool. In this study, the three corners, weak part in condensation, were conducted by three-dimensional steady state simulation. From the results, it is required to strengthen insulation design, and it is founded that existing insulation system typically applied to most Korean apartment buildings has serious insulation defect that insulation is disconnected by structural components at the joints of wall-slab and wall-wall in envelope. So, it is considerate to need a concrete technology improvement.

  • PDF

Comparison of Annual Heating and Cooling Loads of Internally and Externally Insulated Apartment Buildings According to the Location of Thermal Mass (내, 외단열 공동주택의 축열체 위치 차이에 따른 동단위 연간 냉난방부하 비교평가)

  • Koo, Bo-Kyoung;Lee, Beung-In;Choi, Doo-Sung;Song, Seung-Yeong
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.1
    • /
    • pp.42-49
    • /
    • 2010
  • The IIS(Internal Insulation System) is applied in most Korean apartment buildings which are the most common type of residential buildings. Consequently, there are many cases in which the layer of insulation is disconnected by the structural components at the wall-slab and wall-wall joints in the envelope. These joints become thermal bridges where the risk of heat loss increases. It is expected that the EIFS(External Insulation and Finish System) is the solution to this problem. In this study, annual heating and cooling loads of apartment buildings with IIS and EIFS were compared using Design Builder program in order to evaluate the thermal storage effect of EIFS where the concrete thermal mass is located inside of the insulation material. As results, the apartment building with EIFS could reduce annual heating and cooling loads by 2.4% and 4.1%, respectively.

Analysis of Housing Cases with Passive Cooling Technologies - Based on LEED(Leadership in Energy and Environmental Design) housing cases in North America - (자연냉방기법 활용 주거 사례분석 연구 - 미국 LEED 인증 주택을 대상으로 -)

  • Yoon, Hea-Kyung;Woo, Seung-Hyun
    • Korean Institute of Interior Design Journal
    • /
    • v.18 no.6
    • /
    • pp.28-35
    • /
    • 2009
  • The purpose of this study is to analyze the state-of-the-art housing cases with passive cooling technologies and to explore the feasibilities for their applications in domestic housing design. Nineteen Leadership in Energy and Environmental Design housing cases from 2002 to 2007 were selected and analyzed their used passive cooling technologies. Besides traditional passive cooling technologies such as site planning according to the sun direction, the use of thermal mass, insulation, shading, below-ground spaces and ventilation, the relatively new technology trends were detected as followings; the use of high performance envelope, operable windows, and geo-thermal energy as the cooling source of heat pumps, increased areas of photovoltaic cells, and the education of the owner and tenants about the adopted passive cooling technologies in a building. Especially, the education may have not been focused in the domestic design despite of its effectiveness on the appropriate operations of passive cooling technologies. The results of this study show their positive adaptations would be beneficial to domestic housing design to reduce energy costs and have cooler housing environments in summer.