• Title/Summary/Keyword: Buffer Cache

Search Result 132, Processing Time 0.021 seconds

The Efficient Merge Operation in Log Buffer-Based Flash Translation Layer for Enhanced Random Writing (임의쓰기 성능향상을 위한 로그블록 기반 FTL의 효율적인 합병연산)

  • Lee, Jun-Hyuk;Roh, Hong-Chan;Park, Sang-Hyun
    • The KIPS Transactions:PartD
    • /
    • v.19D no.2
    • /
    • pp.161-186
    • /
    • 2012
  • Recently, the flash memory consistently increases the storage capacity while the price of the memory is being cheap. This makes the mass storage SSD(Solid State Drive) popular. The flash memory, however, has a lot of defects. In order that these defects should be complimented, it is needed to use the FTL(Flash Translation Layer) as a special layer. To operate restrictions of the hardware efficiently, the FTL that is essential to work plays a role of transferring from the logical sector number of file systems to the physical sector number of the flash memory. Especially, the poor performance is attributed to Erase-Before-Write among the flash memory's restrictions, and even if there are lots of studies based on the log block, a few problems still exists in order for the mass storage flash memory to be operated. If the FAST based on Log Block-Based Flash often is generated in the wide locality causing the random writing, the merge operation will be occur as the sectors is not used in the data block. In other words, the block thrashing which is not effective occurs and then, the flash memory's performance get worse. If the log-block makes the overwriting caused, the log-block is executed like a cache and this technique contributes to developing the flash memory performance improvement. This study for the improvement of the random writing demonstrates that the log block is operated like not only the cache but also the entire flash memory so that the merge operation and the erase operation are diminished as there are a distinct mapping table called as the offset mapping table for the operation. The new FTL is to be defined as the XAST(extensively-Associative Sector Translation). The XAST manages the offset mapping table with efficiency based on the spatial locality and temporal locality.

A Dynamic Transaction Routing Algorithm with Primary Copy Authority (주사본 권한을 이용한 동적 트랜잭션 분배 알고리즘)

  • Kim, Ki-Hyung;Cho, Hang-Rae;Nam, Young-Hwan
    • The KIPS Transactions:PartD
    • /
    • v.10D no.7
    • /
    • pp.1067-1076
    • /
    • 2003
  • Database sharing system (DSS) refers to a system for high performance transaction processing. In DSS, the processing nodes are locally coupled via a high speed network and share a common database at the disk level. Each node has a local memory and a separate copy of operating system. To reduce the number of disk accesses, the node caches database pages in its local memory buffer. In this paper, we propose a dynamic transaction routing algorithm to balance the load of each node in the DSS. The proposed algorithm is novel in the sense that it can support node-specific locality of reference by utilizing the primary copy authority assigned to each node; hence, it can achieve better cache hit ratios and thus fewer disk I/Os. Furthermore, the proposed algorithm avoids a specific node being overloaded by considering the current workload of each node. To evaluate the performance of the proposed algorithm, we develop a simulation model of the DSS, and then analyze the simulation results. The results show that the proposed algorithm outperforms the existing algorithms in the transaction processing rate. Especially the proposed algorithm shows better performance when the number of concurrently executed transactions is high and the data page access patterns of the transactions are not equally distributed.