• 제목/요약/키워드: Buffalo Milk

검색결과 80건 처리시간 0.025초

Nutritional Management for Buffalo Production

  • Sarwar, M.;Khan, M.A.;Nisa, M.;Bhatti, S.A.;Shahzad, M.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제22권7호
    • /
    • pp.1060-1068
    • /
    • 2009
  • The buffalo (Bubalus bubalis) is an important contributor to milk, meat, power, fuel and leather production in many developing countries. Buffaloes can be categorized into Asian and Mediterranean buffaloes. Asian buffalo includes two subspecies known as Riverine and Swamp types. Riverine (water buffalo) and Swamp buffaloes possess different genetics (50 vs. 48 chromosomes, respectively), morphology (body frame, body weight, horn shape and skin color) and behavior (wallowing in mud or water) and thus, are reared and used for different purposes. Low per head milk yield, poor reproductive performance (seasonal breeding behavior, anestrous, and longer calving interval) and low growth rate in buffaloes have been attributed to insufficient supply of nutrients. In many parts of Asia, where the buffalo is an integral part of the food chain and rural economy, irregular and inadequate availability of quality feedstuffs and their utilization are hampering the performance of this unique animal. Balanced nutrition and better management can enhance buffalo productivity. Many efforts have been made in the last few decades to improve nutrient supply and utilization in buffaloes. Recent research on locally available feed resources such as crop residues, and industrial by-products, dietary addition of micronutrients, use of performance modifiers and use of ruminally protected fat and protein sources have shown significant potential to improve growth, milk yield and reproductive performance of buffaloes. However, a number of issues, including establishment of nutrient requirements for dairy and beef, development of buffalo calf feeding systems, nutritional management of metabolic and reproductive anomalies, and understanding and exploitation of the buffalo gut ecosystem, need to be addressed. Extensive coordinated research and extension efforts are required for improved buffalo nutrition in developing countries.

Feeding Traits, Nutritional Status and Milk Production of Dairy Cattle and Buffalo in Small-scale Farms in Terai, Nepal

  • Hayashi, Yoshiaki;Maharjan, Keshav Lall;Kumagai, Hajime
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제19권2호
    • /
    • pp.189-197
    • /
    • 2006
  • Twenty small-scale farms of two villages (A and B) were surveyed to identify the feeding traits, milk productivity and nutritional status of lactating cattle and buffalo in Terai, Nepal. Constituents and dry matter (DM) of feed supplied, body condition score (BCS), heart girth (HG), bodyweight (BW), milk yield (MY) and plasma metabolites were obtained in the pasture-sufficient, pasture-decreasing and fodder-shortage periods. Milk yield of 305-day lactation was estimated by the daily MY. The supplies of rice straw and native grass were lower and higher in the pasture-sufficient period than in the other periods, respectively (5.5 kg/day vs. 9.8 kg/day and 3.2 kg/day vs. 0.4 kg/day, respectively, p<0.01). The roughage-supplement rates of the animals were higher in village A than in village B (5.0 vs. 2.2 in cattle and 9.3 vs. 1.8 in buffalo, p<0.01). The variance of feed constituents among the periods and between the villages induced different supplies of CP, NDF and TDN. The concentrations of CP and TDN in the cattle feed were higher in the pasture-sufficient period than in the other periods (9.1% vs. 7.3% and 57.4% vs. 51.0%, respectively, p<0.01). The supplies of CP for cattle and buffalo, and of TDN for buffalo were lower in village A than in village B (7.5% vs. 8.7% and 6.6% vs. 9.1% [p<0.01], and 53.1% vs. 56.2% [p<0.05], respectively). The BCS, HG and BW of the animals were lower in village A than in village B (2.51 vs. 2.86, 156 cm vs. 170 cm and 300 kg vs. 318 kg, respectively in cattle, 2.83 vs. 4.00, 186 cm vs. 216 cm and 429 kg vs. 531 kg, respectively in buffalo, p<0.01). The cattle yielded more milk in the pasture-sufficient period than in the other periods (7.9 liters/day vs. 6.6 liters/day, p<0.01). The 305-day MY of cattle that calved in the fodder-shortage period was lower than that of cattle that calved in the other periods (1,900 liters vs. 2,251 liters, p<0.01). The MYs of cattle and buffalo were lower in village A than in village B (6.2 liters/day vs. 8.1 liters/day and 3.7 liters/day vs. 7.7 liters/day, respectively, p<0.01). The 305-day MY of cattle was lower in village A than in village B (1,935 liters vs. 2,409 liters, p<0.01). The concentrations of plasma albumin and urea nitrogen in cattle were lower in village A than in village B (3.2 g/dl vs. 3.4 g/dl [p<0.01] and 7.4 mg/dl vs. 10.2 mg/dl [p<0.05], respectively). The different supplies of CP, NDF and TDN among the periods and between the villages might have affected MY and nutritional status in cattle and buffalo. It was likely that the lower supplies of CP and TDN for cattle that calved in the fodder-shortage period and in village A lowered the 305-day MY of cattle.

Evaluation of Milk Trace Elements, Lactate Dehydrogenase, Alkaline Phosphatase and Aspartate Aminotransferase Activity of Subclinical Mastitis as and Indicator of Subclinical Mastitis in Riverine Buffalo (Bubalus bubalis)

  • Guha, Anirban;Gera, Sandeep;Sharma, Anshu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권3호
    • /
    • pp.353-360
    • /
    • 2012
  • Mastitis is a highly morbid disease that requires detection at the subclinical stage. Tropical countries like India mainly depend on milch buffaloes for milk. The present study was conducted to investigate whether the trace minerals viz. copper (Cu), iron (Fe), zinc (Zn), cobalt (Co) and manganese (Mn) and enzyme activity of lactate dehydrogenase (LDH), alkaline phosphatase (ALP) and aspartate aminotransferase (AST) in riverine buffalo milk can be used as an indicator of subclinical mastitis (SCM) with the aim of developing suitable diagnostic kit for SCM. Trace elements and enzyme activity in milk were estimated with Atomic absorption Spectrophotometer, GBC 932 plus and biochemical methods, respectively. Somatic cell count (SCC) was done microscopically. The cultural examination revealed Gram positive bacteria as the most prevalent etiological agent. A statistically significant (p<0.01) increase in SCC, Fe, Zn, Co and LDH occurred in SCM milk containing gram positive bacterial agents only. ALP was found to be elevated in milk infected by both gram positive and negative bacteria. The percent sensitivity, specificity and accuracy, predictive values and likelihood ratios were calculated taking bacterial culture examination and $SCC\geq2{\times}10^5$ cells/ml of milk as the benchmark. Only ALP and Zn, the former being superior, were found to be suitable for diagnosis of SCM irrespective of etiological agents. LDH, Co and Fe can be introduced in the screening programs where Gram positive bacteria are omnipresent. It is recommended that both ALP and Zn be measured together in milk to diagnose buffalo SCM, irrespective of etiology.

Influence of Milk Co-precipitates on the Quality of Restructured Buffalo Meat Blocks

  • Kumar, Sunil;Sharma, B.D.;Biswas, A.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제17권4호
    • /
    • pp.564-568
    • /
    • 2004
  • Restructuring had made it possible to utilize lower value cuts and meat trimmings from spent animals by providing convenience in product preparation besides enhancing tenderness, palatability and value. Milk co-precipitates (MCP) have been reported to improve the nutritional and functional properties of certain meat products. This study was undertaken to evaluate the influence of incorporation of milk co-precipitates at four different levels viz. 0, 10, 15 and 20% on the quality of restructured buffalo meat blocks. Low-calcium milk co-precipitates were prepared from skim milk by heat and salt coagulation of milk proteins. Meat chunks were mixed with the curing ingredients and chilled water in a Hobart mixer for 5 minutes, followed by addition of milk co-precipitates along with condiments and spice mix and again mixed for 5 minutes. Treated chunks were stuffed in aluminium moulds and cooked in steam without pressure for 1.5 h. After cooking, treated meat blocks were compared for different physico-chemical and sensory attributes. Meat blocks incorporated with 10% MCP were significantly better (p<0.05) than those incorporated with 0, 15 and 20% MCP in cooking yield, percent shrinkage and moisture retention. Sensory scores were also marginally higher for meat blocks incorporated with 10% MCP than product incorporated with 15 and 20% MCP, besides being significantly higher than control. On the basis of above results 10% MCP was considered optimum for the preparation of restructured buffalo meat blocks. Instrumental texture profile analysis revealed that meat blocks incorporated with 10% MCP were significantly better (p<0.05) in hardness/ firmness than control although, no significant (p>0.05) differences were observed in cohesiveness, springiness, gumminess and chewiness of both type of samples.

The Effects of the Somatic Cell Count on Yield, Composition and Coagulating Properties of Mediterranean Buffalo Milk

  • Tripaldi, C.;Terramoccia, S.;Bartocci, S.;Angelucci, M.;Danese, V.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제16권5호
    • /
    • pp.738-742
    • /
    • 2003
  • The monitoring was carried out for one year on 20 farms of Mediterranean buffalo situated in central Italy. The milk yield, the somatic cell count, the coagulating properties and some components were determined. The average value of somatic cells was $21.28n{\times}10^3/ml$. Milk production decreased when somatic cell numbers increased. The rennet clotting time increased significantly when somatic cells were higher than $300.00n{\times}10^3/ml$, the curd firming time was significantly higher when somatic cells were more than $1,000.00n{\times}10^3/ml$ and the curd firmness increased up to $200.00n{\times}10^3$/ml, then gradually decreased. Protein and casein decreased when somatic cells increased and the same trend was shown by casein/protein ratio. Both for these components and the coagulating properties the threshold limit of somatic cells to obtain better results was $200.00n{\times}10^3/ml$. The somatic cell number did not show a trend which was strictly influenced by the lactation stage, contrary to what happened in the other species.

Effect of Dietary Energy and Protein Contents on Buffalo Milk Yield and Quality during Advanced Lactation Period

  • Bovera, F.;Calabro, S.;Cutrignelli, M.I.;Di Lella, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제15권5호
    • /
    • pp.675-681
    • /
    • 2002
  • Among Italian buffalo farmers, it is widely held that administering diets with high energy and protein concentrations is an effective way to increase milk production. In order to assess the validity of this opinion, we verified milk yield and physico-chemical characteristics from buffaloes that, from the $5^{th}$ month of lactation, were fed two total mixed rations (TMRs) which, given the same intake, should have led to satisfaction of protein requirements though with a slight energy deficit (diet A) or excessive amounts of energy and protein (diet B). Estimate of the energy and protein value of the diets and that of the corresponding requirements was carried out both by using two software programs derived from the Cornell Net Carbohydrate and Protein System (1992), and with the method set up by INRA researchers (1988). The results obtained show that the two diets administered did not result in significant changes to the quantity of milk produced. However, with Diet B the protein concentration in the milk was significantly (p<0.01) higher, although this was partly offset by the higher concentration (p<0.05) of non-protein nitrogen (NNP). The Group B buffaloes also showed significantly higher blood urea levels (p<0.01), with concentrations exceeding those considered physiological for lactating buffaloes. Finally, while administering Diet A the Body Condition Score (BCS) was close to 6.5 (Wagner et al., 1988), whereas in buffaloes which used Diet B it sometimes increased by over 0.5 points. As regards which of the two methods compared is more suitable for expressing dietary energy and protein value and corresponding requirements, we feel that due to the high variability in the Italian Mediterranean buffalo's milk production aptitude, it would be premature to express a judgement on methods which rest on a common scientific base and do not differ substantially.

Comparison of α1-Antitrypsin, α1-Acid Glycoprotein, Fibrinogen and NOx as Indicator of Subclinical Mastitis in Riverine Buffalo (Bubalus bubalis)

  • Guha, Anirban;Guha, Ruby;Gera, Sandeep
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제26권6호
    • /
    • pp.788-794
    • /
    • 2013
  • Mastitis set apart as clinical and sub clinical is a disease complex of dairy cattle, with sub clinical being the most important economically. Of late, laboratories showed interest in developing biochemical markers to diagnose sub clinical mastitis (SCM) in herds. Many workers reported noteworthy alternation of acute phase proteins (APPs) and nitric oxide, (measured as nitrate+nitrite = NOx) in milk due to intra-mammary inflammation. But, the literature on validation of these parameters as indicators of SCM, particularly in riverine milch buffalo (Bubalus bubalis) milk is inadequate. Hence, the present study focused on comparing several APPs viz. ${\alpha}_1$-anti trypsin, ${\alpha}_1$-acid glycoprotein, fibrinogen and NOx as indicators of SCM in buffalo milk. These components in milk were estimated using standardized analytical protocols. Somatic cell count (SCC) was done microscopically. Microbial culture was done on 5% ovine blood agar. Of the 776 buffaloes (3,096 quarters) sampled, only 347 buffaloes comprising 496 quarters were found positive for SCM i.e. milk culture showed growth in blood agar with $SCC{\geq}2{\times}10^5$ cells/ml of milk. The cultural examination revealed Gram positive bacteria as the most prevalent etiological agent. It was observed that ${\alpha}_1$-anti trypsin and NOx had a highly significant (p<0.01) increase in SCM milk, whereas, the increase of ${\alpha}_1$-acid glycoprotein in infected milk was significant (p<0.05). Fibrinogen was below detection level in both healthy and SCM milk. The percent sensitivity, specificity and accuracy, predictive values and likelihood ratios were calculated taking bacterial culture examination and $SCC{\geq}2{\times}10^5$ cells/ml of milk as the benchmark. Udder profile correlation coefficient was also used. Allowing for statistical and epidemiological analysis, it was concluded that ${\alpha}_1$-anti trypsin indicates SCM irrespective of etiology, whereas ${\alpha}_1$-acid glycoprotein better diagnosed SCM caused by gram positive bacteria. NOx did not prove to be a good indicator of SCM. It is recommended measuring both ${\alpha}_1$-anti trypsin and ${\alpha}_1$-acid glycoprotein in milk to diagnose SCM in buffalo irrespective of etiology.

Estimation of Genetic Parameters of Some Productive and Reproductive Traits in Italian Buffalo. Genetic Evaluation with BLUP-Animal Model

  • Catillo, G.;Moioli, B.;Napolitano, F.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제14권6호
    • /
    • pp.747-753
    • /
    • 2001
  • In this study, the Italian milk recorded buffalo population from 1974 to 1996 was analysed with the purpose to estimate genetic and environmental variability and provide genetic parameters for the most important economic traits. High variability between herds was evident due to the poor knowledge of feeding requirements and husbandry technology in this species compared to cattle. Age at first calving was reduced by 57 days during the considered years following efforts made in better feeding and management from 1990; on the contrary, calving interval has increased by 17 days as a consequence of forcing buffaloes to calve in spring, in order to have the peak milk yield when milk is much better paid. Average milk yield increased by 1853 kg during these years, while lactation duration was reduced by 30 days. Season of calving has no effect on all traits. Calving order has a positive effect on milk yield especially because older cows produce more milk in shorter lactations. Heritability for the age at first calving and calving interval was 0.26 and 0.05 respectively. Heritability of productive traits, milk yield and duration of the lactation was 0.19 and 0.13 respectively, with repeatabilities of 0.40 and 0.26. Genetic trend for milk yield was 2.1 kg milk/year for the bulls and 1 kg for all population. The high genetic variability of milk production as well as duration of the lactation, indicates that there are good opportunities for genetic improvement when including these traits in a selection scheme. The low genetic trend registered over 15 years of recording activity can be explained by the fact that neither progeny testing was performed or selection schemes were implemented, due to the difficulties to use artificial insemination in buffalo.

RELATIONSHIP BETWEEN SOME CIRCULATING HORMONES, METABOLITES AND MILK YIELD IN LACTATING CROSSBRED COWS AND BUFFALOES

  • Jindal, S.K.;Ludri, R.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제7권2호
    • /
    • pp.239-248
    • /
    • 1994
  • To study the relationship between certain hormones and metabolites and between hormones and milk yield during different stage of lactation, six lactating Karan Swiss cows and six Murrah buffaloes were maintained. Growth hormone, insulin, $T_3$, $T_4$, glucose, BHBA, NEFA and milk yield were studied. Highly negative relationship of growth hormone with insulin and triiodothyronine in cows and marginally negative in buffaloes suggest that insulin and triiodothyronine aid in the process of partitioning of nutrients towards milk production through reducing the demands of nutrients by peripheral tissue. The significant and negative correlation of growth hormone with dry matter intake in both the species suggest that the availability of nutrients from the digestive tract play a role in the regulation of growth hormone secretion. Positive relationship of growth hormone with non esterified fatty acids in both the species suggest that high growth hormone levels may result in fat mobilization and thereby increase the availability of energy precursors for milk synthesis. Insulin was negatively correlated with milk yield and lactose content and positively with milk fat and protein but the degree of relationship varied. In both the species the relationship between triiodothyronine and milk yield was negative and between thyroxine and milk yield was positive. However, it was significant only in cows and not in buffaloes. Thyroxine was positively correlated with beta-hydroxybutyrate and non-esterified fatty acids with milk yield in both the species.

Plasma Protein Profile of Neonatal Buffalo Calves in Relation to the Protein Profile of Colostrum/Milk during First Week Following Parturition

  • Lone, Abdul Gani;Singh, Charanbir;Singha, S.P.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제16권3호
    • /
    • pp.348-352
    • /
    • 2003
  • An investigation was made into the protein profile of colostrum/milk of ten Murrah buffaloes and of their ten buffalo calves during their first week of neonatal life to study the materno-neonatal transfer of immunoglobulins (Ig). Calves were pail fed 3.5 liter of colostrum and/or milk per calf/day exclusively from their dam. First blood sample from newborn calves was collected before colostrum feeding on the day of birth (day zero) and the sampling continued daily for seven days after colostrum/milk feeding. Colostrum/milk Ig and IgG values were $4.82{\pm}2.60$, $2.19{\pm}1.90$, $1.12{\pm}0.82$, $0.69{\pm}0.44$, $0.59{\pm}0.31$, $0.47{\pm}0.20$, $0.40{\pm}0.22$, $0.40{\pm}0.25$ and $3.58{\pm}1.90$, $1.08{\pm}0.92$, $0.52{\pm}0.40$, $0.31{\pm}0.20$, $0.27{\pm}0.14$, $0.22{\pm}0.08$, $0.18{\pm}0.09$, $0.14{\pm}0.08$ respectively during 0-7 days post partum. The concentration of total colostrum/milk proteins, Ig, IgG and albumin were highest within 12 h post-partum. Thereafter, the concentrations followed a declining trend which may be attributed to the reduced transfer of proteins from the maternal blood, declining synthesis by the mammary glands and/or depletion of stored proteins. The concentrations of plasma Ig and IgG before colostrum feeding on day zero were $0.42{\pm}0.09$ and $0.08{\pm}0.03$ respectively. The levels of plasma Ig were $1.90{\pm}0.37$, $1.80{\pm}0.31$, $1.80{\pm}0.26$, $1.81{\pm}0.28$, $1.78{\pm}0.31$, $1.79{\pm}0.21$, $1.80{\pm}0.32$ and of IgG were $1.57{\pm}0.41$, $1.30{\pm}0.29$, $1.31{\pm}0.21$, $1.27{\pm}0.18$, $1.23{\pm}0.21$, $1.23{\pm}0.16$, $1.26{\pm}0.21$ on days 1-7 after birth after colostrum/milk feeding. The concentrations of total plasma proteins, Ig, IgG were lowest before colostrum feeding and increased significantly (p<0.05) after colostrum feeding in buffalo neonates. The results suggest that the highest amounts of colostral Ig and IgG were available on the day of parturition and thus the calves should receive colostrum as early after birth as possible. Colostrum Ig and IgG concentrations were not correlated to plasma Ig and IgG concentrations in the post-suckle buffalo calves and therefore, colostrum Ig and IgG concentrations were probably not the principle determinants of calf post-suckle plasma Ig and IgG concentrations.