• Title/Summary/Keyword: Buckling stability

Search Result 509, Processing Time 0.024 seconds

Buckling Design of Temporary Bridges Subjected to Both Bending and Compression (압축과 휨을 동시에 받는 가교량 주요부재의 좌굴설계)

  • So Byoung-Hoon;Kyung Yong-Soo;Bang Jin-Hwan;Kim Moon-Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.977-984
    • /
    • 2006
  • Generally main girders and steel piers of temporary bridges form the steel rahmen structure. In this study, the rational stability design procedure for main members of temporary bridges is presented using 3D system buckling analysis and second-order elastic analysis. 2 types of temporary bridges, which are possible to be designed and fabricated in reality, are chosen and the buckling design for them is performed considering load combinations of dead and live loads, thermal load, and wind load. Effective buckling length of steel piers, effects of live loads on effective length of main members, transition of ~id buckling modes, and effects of second-order analysis are investigated through case study of 2 temporary bridges.

  • PDF

A Study on Buckling Characteristics of Arch-type Vinyl House Structures according to Analytical Precision (아치형 비닐하우스 구조의 해석정밀도에 따른 좌굴특성 연구)

  • Yoon, Seok-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.4
    • /
    • pp.57-64
    • /
    • 2015
  • The construction of vinyl greenhouses are increasing because of economic feasibility, construction period, and construction regulations. However, the vinyl greenhouses are apt to collapse by snow load since they have a small member as a temporary structure. The 3 types of buckling such as global, member and nodal buckling could be occurred to arched structures according to characteristics of cross section. To examine the member buckling, the precision of analysis need to be enhanced. In that case, we can examine the characteristics of the those buckling. The purposes of this study are to verify buckling characteristics of structures using the method of high precision analysis with a center node of member. The results of high precision analysis bring member buckling, and in the analysis method having the center node of member, the value of strength is getting lower than a previous study.

A Study on the Deflection Mode of a Ship's Plate according to the Arc-Length Method (호장증분법에 의한 선체판의 처짐모드에 관한 연구)

  • 고재용;박주신;이돈출;박성현
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.732-737
    • /
    • 2003
  • Recently, the buckling is easy to happen a thin plate and High Tensile Steel is used at the structure so that it is wide. Especially, the buckling is becoming important design criteria in the ship structure to use especially the High Tensile Steel. Consequently, it is important that we grasp the conduct after the buckling behaviour accurately at the stability of the body of ship structure. In this study, examined closely about conduct and secondary buckling after initial buckling of thin plate structure which receive compressive load according to various kinds aspect ratio under simply supported condition that make by buckling formula in each payment in advance rule to place which is representative construction of hull. Analysis method is F.E.M by ANSYS and complicated nonlinear behaviour to analyze such as secondary buckling.

  • PDF

A study on the bifurcation buckling for shallow sinusoidal Arches (얕은 정현형(正弦型) 아치의 분기좌굴에 관한 연구)

  • 김승덕;권택진;박지윤
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.457-464
    • /
    • 1998
  • The equilibrium path of shallow sinusoidal arches supported by hinges at both ends is investigated. The displacement increment method is used to get the solution of the nonlinear differential equations for these structures and to plot the equilibrium paths by the results. Using the equilibrium paths, the relations between the position of buckling point and buckling type for the case of sinusoidal distributed loads are inferred. From the result that the buckling type changes according to the normalized rise of arch, it is also shown that the arch rise is the governing factor to stability regions

  • PDF

An Improved Stability Design of Cable-Stayed Bridges using System Buckling and Second-Order Elastic Analysis (활하중의 영향을 고려한 시스템 좌굴해석 및 2차 탄성해석을 이용한 사장교의 개선된 좌굴설계)

  • Kyung, Yong Soo;Kim, Moon Young;Chang, Sung Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3A
    • /
    • pp.485-496
    • /
    • 2006
  • Practical stability design method of main members of cable-stayed bridges is proposed and discussed through a design example. For this purpose, initial tensions of stay cables and axial forces of main members are firstly determined using initial shaping analysis of bridges under dead loads. And then the effective buckling length using system elastic/inelastic buckling analysis and bending moments considering $P-{\delta}-{\Delta}$ effect by second-order elastic analysis are calculated for main girder and pylon members subjected to both axial forces and moments, respectively. Particularly, three load combinations of dead and live loads, in which maximum load effects due to live loads are obtained, are taken into account and effects of live loads on effective buckling lengths are investigated.

Braced, partially braced and unbraced columns: Complete set of classical stability equations

  • Aristizabal-Ochoa, J. Dario
    • Structural Engineering and Mechanics
    • /
    • v.4 no.4
    • /
    • pp.365-381
    • /
    • 1996
  • Stability equations that evaluate the elastic critical axial load of columns in any type of construction with sidesway uninhibited, partially inhibited, and totally inhibited are derived in a classical manner. These equations can be applied to the stability of frames (unbraced, partially braced, and totally braced) with rigid, semirigid, and simple connections. The complete column classification and the corresponding three stability equations overcome the limitations and paradoxes of the well known alignment charts for braced and unbraced columns and frames. Simple criteria are presented that define the concept of partially braced columns and frames, as well as the minimum lateral bracing required by columns and frames to achieve non-sway buckling mode. Various examples are presented in detail that demonstrate the effectiveness and accuracy of the complete set of stability equations.

Nonlinear Buckling Analysis of H-Type Honeycombed Composite Column with Rectangular Concrete-Filled Steel Tube Flanges

  • Ji, Jing;Xu, Zhichao;Jiang, Liangqin;Yuan, Chaoqing;Zhang, Yunfeng;Zhou, Lijian;Zhang, Shilong
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1153-1166
    • /
    • 2018
  • This paper was concerned with the nonlinear analysis on the overall stability of H-type honeycombed composite column with rectangular concrete-filled steel tube flanges (STHCC). The nonlinear analysis was performed using ABAQUS, a commercially available finite element (FE) program. Nonlinear buckling analysis was carried out by inducing the first buckling mode shape of the hinged column to the model as the initial imperfection with imperfection amplitude value of L/1000 and importing the simplified constitutive model of steel and nonlinear constitutive model of concrete considering hoop effect. Close agreement was shown between the experimental results of 17 concrete-filled steel tube (CFST) specimens and 4 I-beams with top flanges of rectangular concrete-filled steel tube (CFSFB) specimens conducted by former researchers and the predicted results, verifying the correctness of the method of FE analysis. Then, the FE models of 30 STHCC columns were established to investigate the influences of the concrete strength grade, the nominal slenderness ratio, the hoop coefficient and the flange width on the nonlinear stability capacity of SHTCC column. It was found that the hoop coefficient and the nominal slenderness ratio affected the nonlinear stability capacity more significantly. Based on the results of parameter analysis, a formula was proposed to predict the nonlinear stability capacity of STHCC column which laid the foundation of the application of STHCC column in practical engineering.

Compression Test of a TBM Thrust Jack for Validating Buckling Stability (TBM 추진잭의 좌굴 안정성 검토를 위한 압축시험)

  • Mun-Gyu Kim;Min-Gi Cho;Jung-Woo Cho;Han-Young Jeong
    • Tunnel and Underground Space
    • /
    • v.33 no.5
    • /
    • pp.339-347
    • /
    • 2023
  • As the jacks provide a thrust force on the inclined surface, bending deformations by a side force occur in the pedestal and rod parts. This can induce disorder or degradation of the thrust module, buckling stability on the inclined compression condition should be clarified to secure the reliability of shield TBM. For analyzing the stability, a buckling testing method for hydraulic cylinder was investigated and compression testing system was installed. Before the test, a numerical analysis was conducted to check the stress concentration parts. The maximum allowable force was loaded on the cylinder specimen at 0 degree surface condition as a preliminary test. After the test, plastic deformations or hydraulic leakage was not observed. The static stability of it was verified at 0 degree condition.

The analytical solution for buckling of curved sandwich beams with a transversely flexible core subjected to uniform load

  • Poortabib, A.;Maghsoudi, M.
    • Structural Engineering and Mechanics
    • /
    • v.52 no.2
    • /
    • pp.323-349
    • /
    • 2014
  • In this paper, linear buckling analysis of a curved sandwich beam with a flexible core is investigated. Derivation of equations for face sheets is accomplished via the classical theory of curved beam, whereas for the flexible core, the elasticity equations in polar coordinates are implemented. Employing the von-Karman type geometrical non-linearity in strain-displacement relations, nonlinear governing equations are resulted. Linear pre-buckling analysis is performed neglecting the rotation effects in pre-buckling state. Stability equations are concluded based on the adjacent equilibrium criterion. Considering the movable simply supported type of boundary conditions, suitable trigonometric solutions are adopted which satisfy the assumed edge conditions. The critical uniform load of the beam is obtained as a closed-form expression. Numerical results cover the effects of various parameters on the critical buckling load of the curved beam. It is shown that, face thickness, core thickness, core module, fiber angle of faces, stacking sequence of faces and openin angle of the beam all affect greatly on the buckling pressure of the beam and its buckled shape.

Stability analysis of transversely isotropic laminated Mindlin plates with piezoelectric layers using a Levy-type solution

  • Ghasemabadian, M.A.;Saidi, A.R.
    • Structural Engineering and Mechanics
    • /
    • v.62 no.6
    • /
    • pp.675-693
    • /
    • 2017
  • In this paper, based on the first-order shear deformation plate theory, buckling analysis of piezoelectric coupled transversely isotropic rectangular plates is investigated. By assuming the transverse distribution of electric potential to be a combination of a parabolic and a linear function of thickness coordinate, the equilibrium equations for buckling analysis of plate with surface bonded piezoelectric layers are established. The Maxwell's equation and all boundary conditions including the conditions on the top and bottom surfaces of the plate for closed and open circuited are satisfied. The analytical solution is obtained for Levy type of boundary conditions. The accurate buckling load of laminated plate is presented for both open and closed circuit conditions. From the numerical results it is found that, the critical buckling load for open circuit is more than that of closed circuit in all boundary and loading conditions. Furthermore, the critical buckling loads and the buckling mode number increase by increasing the thickness of piezoelectric layers for both open and closed circuit conditions.