• 제목/요약/키워드: Buckling restrained braces

검색결과 92건 처리시간 0.021초

좌굴방지링으로 횡지지된 건식형 좌굴방지가새 내진보강에 대한 실험적 연구 (An Experimental Study on Seismic Reinforcement of Dry Type Buckling Restrained Braces Laterally Using Buckling Restrained Rings)

  • 이선재;문희숙;박병태
    • 한국지진공학회논문집
    • /
    • 제26권4호
    • /
    • pp.165-172
    • /
    • 2022
  • This study is conducted to verify the seismic reinforcement effects of internally inserted buckling-restrained braces supported laterally by buckling-restrained rings for the seismic reinforcement of existing reinforced concrete buildings with non-seismic details. First, to evaluate the performance of KDS, the hysteretic characteristics of buckling-restrained braces are verified, and it is discovered that they satisfy the conformance criteria of the displacement-dependent damping device. Three full-scale, two-story reinforced concrete framework specimens are prepared to verify the seismic reinforcement effects, and the proposed buckling-restrained braces are bolstered with single diagonal and V-shaped braces to be compared with non-reinforced specimens. By performing a comparison with non-reinforced specimens that present intensive shear cracks at the bottom of first-floor columns, it is revealed that the maximum load and energy dissipation of specimens reinforced with the proposed buckling restrained braces, in which the structural damage extends evenly throughout the system, are approximately 4 and 6.2 times higher, respectively, which proves the effectiveness of the proposed seismic reinforcement method.

Local and global buckling condition of all-steel buckling restrained braces

  • Mirtaheri, Seyed Masoud;Nazeryan, Meissam;Bahrani, Mohammad Kazem;Nooralizadeh, Amin;Montazerian, Leila;Naserifard, Mohamadhosein
    • Steel and Composite Structures
    • /
    • 제23권2호
    • /
    • pp.217-228
    • /
    • 2017
  • Braces are one of the retrofitting systems of structure under earthquake loading. Buckling restrained braces (BRBs) are one of the very efficient braces for lateral loads. One of the key needs for a desirable and acceptable behavior of buckling-restraining brace members under intensive loading is that it prevents total buckling until the bracing member tolerates enough plastic deformation and ductility. This paper presents the results of a set of analysis by finite element method on buckling restrained braces in which the filler materials within the restraining member have been removed. These braces contain core as the conventional BRBs, but they have a different buckling restrained system. The purpose of this analysis is conducting a parametric study on various empty spaces between core and restraining member, the effect of friction between core and restraining member and applying initial deformation to brace system to investigate the global buckling behavior of these braces. The results of analysis indicate that the flexural stiffness of restraining member, regardless of the amount of empty space, can influence the global buckling behavior of brace significantly.

Application of Buckling Restrained Braces in a 50-Storey Building

  • Sy, Jose A.;Anwar, Naveed;Aung, Thaung Htut;Rayamajhi, Deepak
    • 국제초고층학회논문집
    • /
    • 제3권1호
    • /
    • pp.81-87
    • /
    • 2014
  • The use of Buckling Restrained Braces (BRB) for enhancing the performance of the buildings is gaining wider acceptance. This paper presents the first application of these devices in a major high-rise building in the Philippines. A 50-storey residential reinforced concrete building tower, with ductile core wall, with BRB system is investigated. The detailed modeling and design procedure of buckling restrained brace system is presented for the optimal design against the two distinct levels of earthquake ground motions; serviceable behavior for frequent earthquakes and very low probability of collapse under extremely rare earthquakes. The stiffness and strength of the buckling restrained brace system are adjusted to optimize the performance of the structural system under different levels of earthquakes. Response spectrum analysis is conducted for Design Basis Earthquake level and Service level, while nonlinear time history analysis is performed for the most credible earthquake. The case study results show the effectiveness of buckling restrained braces.

Prequalification of a set of buckling restrained braces: Part II - numerical simulations

  • Zub, Ciprian Ionut;Stratan, Aurel;Dubina, Dan
    • Steel and Composite Structures
    • /
    • 제34권4호
    • /
    • pp.561-580
    • /
    • 2020
  • Buckling restrained braces (BRBs) were developed as an enhanced alternative to conventional braces by restraining their global buckling, thus allowing development of a stable quasi-symmetric hysteretic response. A wider adoption of buckling restrained braced frames is precluded due to proprietary character of most BRBs and the code requirement for experimental qualification. To overcome these problems, BRBs with capacities corresponding to typical steel multi-storey buildings in Romania were developed and experimentally tested in view of prequalification. In the second part of this paper, a complex nonlinear numerical model for the tested BRBs was developed in the finite element environment Abaqus. The calibration of the numerical model was performed at both component (material models: steel, concrete, unbonding material) and member levels (loading, geometrical imperfections). Geometrically and materially nonlinear analyses including imperfections were performed on buckling restrained braces models under cyclic loading. The calibrated models were further used to perform a parametric study aiming at assessing the influence of the strength of the buckling restraining mechanism, concrete class of the infill material, mechanical properties of steel used for the core, self-weight loading, and frame effect on the cyclic response of buckling restrained braces.

Fragility assessment of shear walls coupled with buckling restrained braces subjected to near-field earthquakes

  • Beiraghi, Hamid
    • Steel and Composite Structures
    • /
    • 제33권3호
    • /
    • pp.389-402
    • /
    • 2019
  • Reinforced concrete walls and buckling restrained braces are effective structural elements that are used to resist seismic loads. In this paper, the behavior of the reinforced concrete walls coupled with buckling restrained braces is investigated. In such a system, there is not any conventional reinforced concrete coupling beam. The coupling action is provided only by buckling restrained braces that dissipate energy and also cause coupling forces in the wall piers. The studied structures are 10-, 20- and 30-story ones designed according to the ASCE, ACI-318 and AISC codes. Wall nonlinear model is then prepared using the fiber elements in PERFORM-3D software. The responses of the systems subjected to the forward directivity near-fault (NF) and ordinary far-fault (FF) ground motions at maximum considered earthquake (MCE) level are studied. The seismic responses of the structures corresponding to the inter-story drift demand, curvature ductility of wall piers, and coupling ratio of the walls are compared. On average, the results show that the inter-story drift ratio for the examined systems subjected to the far-fault events at MCE level is less than allowable value of 3%. Besides, incremental dynamic analysis is used to examine the considered systems. Results of studied systems show that, the taller the structures, the higher the probability of their collapse. Also, for a certain peak ground acceleration of 1 g, the probability of collapse under NF records is more than twice this probability under FF records.

Analysis on damage of RC frames retrofitted with buckling-restrained braces based on estimation of damage index

  • Liu, Ruyue;Yang, Yong
    • Structural Engineering and Mechanics
    • /
    • 제70권6호
    • /
    • pp.781-791
    • /
    • 2019
  • Earthquakes most often induce damage to structures, resulting in the degradation or deterioration of integrity. In this paper, based on the experimental study on 5 RC frames with different span length and different layout of buckling-restrained braces, the seismic damage evaluation law of RC frame with buckling-restrained braces was analyzed, and then the seismic damage for different specimens was calculated using different damage models to study the damage evolution. By analyzing and comparing the observation in test and the calculated results, it could be found that, damage evolution models including Gosain model, Hwang model as well as Ou model could better simulate the development of damage during cyclic loading. Therefore, these 3 models were utilized to analyze the development of damage to better demonstrate the evolution law for structures with different layout of braces and under different axial compression ratios. The results showed that from all layouts of braces studied, the eccentrically braced frame behaved better under larger deformation with the damage growing slowly. It could be deduced that the link beam benefited the seismic performance of structure and alleviated the damage by absorbing high values of energy.

하이브리드 비좌굴가새의 내진성능에 대한 해석적 평가 (Analytical Estimation on the Seismic Performance of Hybrid Buckling-Restrained Braces)

  • 김도현;김영식
    • 한국공간구조학회논문집
    • /
    • 제14권3호
    • /
    • pp.57-65
    • /
    • 2014
  • In order to improve the wind performance of buckling-restrained braces (BRBs), Hybrid buckling-restrained braces (H-BRBs) have been studied in Korea. The seismic performance of H-BRBs is different according to the action of VE damper. In this study, the nonlinear time history analyses have been performed on the parameters such as brace types and input earthquakes. The results of the study suggest that H-BRBs meet the BRB's requirement of ANSI/AISC 341-10 only if VE damper is not working during an earthquake.

Structural behavior of conventional and buckling restrained braced frames subjected to near-field ground motions

  • Guneyisi, Esra Mete;Ameen, Nali
    • Earthquakes and Structures
    • /
    • 제7권4호
    • /
    • pp.553-570
    • /
    • 2014
  • In this study, nonlinear dynamic analyses were performed in order to evaluate and compare the structural response of different type of moment resisting frame buildings equipped with conventional braces (CBs) and buckling restrained braces (BRBs) subjected to near-field ground motions. For this, the case study frames, namely, ordinary moment-resisting frame (OMRF) and special moment-resisting frame (SMRF) having two equal bays of 6 m and a total height of 20 m were utilized. Then, CBs and BRBs were inserted in the bays of the existing frames. As a brace pattern, diagonal type with different configurations were used for the braced frame structures. For the earthquake excitation, artificial pulses equivalent to Northridge and Kobe earthquake records were taken into account. The results in terms of the inter-story drift index, global damage index, base shear, top shear, damage index, and plastification were discussed. The analysis of the results indicated a considerable improvement in the structural performance of the existing frames with the inclusion of conventional and especially buckling-restrained braces.

Cyclic test of buckling restrained braces composed of square steel rods and steel tube

  • Park, Junhee;Lee, Junho;Kim, Jinkoo
    • Steel and Composite Structures
    • /
    • 제13권5호
    • /
    • pp.423-436
    • /
    • 2012
  • In this study total of six buckling-restrained braces (BRBs) were manufactured using a square steel rod as a load-resisting core member and a hollow steel tube as restrainer to prevent global buckling of the core. The gap between the core and the tube was filled with steel rods as filler material. The performances of the proposed BRB from uniaxial and subassemblage tests were compared with those of the specimens filled with mortar. The test results showed that the performance of the BRB with discontinuous steel rods as filler material was not satisfactory, whereas the BRBs with continuous steel rods as filler material showed good performance when the external tubes were strong enough against buckling. It was observed that the buckling strength of the external tube of the BRBs filled with steel rods needs to be at least twice as high as that of the BRBs filled with mortar to ensure high cumulative plastic deformation of the BRB.

Nonlinear dynamic response of reinforced concrete building retrofitted with buckling restrained braces

  • Guneyisi, Esra Mete;Tunca, Osman;Azez, Ibrahim
    • Earthquakes and Structures
    • /
    • 제8권6호
    • /
    • pp.1349-1362
    • /
    • 2015
  • This paper presents an analytical study aimed at evaluating the effectiveness of using buckling-restrained braces (BRBs) in mitigating the seismic response of a case study 6 storey reinforced concrete (RC) building. In the design of the BRBs with non-prismatic cross-sections, twelve combinations of ${\alpha}$ and ${\beta}$ design parameters that influence the strength and stiffness of the BRBs, respectively, were considered. The response of the structure with and without BRBs under earthquake ground accelerations were evaluated through nonlinear dynamic analysis. Two sets of ground motions representative of the design earthquake with 10% and 50% exceedance probability in fifty years were taken into account. By comparing the structural performance of the original and buckling restrained braced structures, it was observed that the use of the BRBs were very effective in mitigating the seismic response as a retrofit scheme. However, the selection of the strength and stiffness parameters of the BRBs had considerable effect on the response characteristics of RC structures. For instance, by increasing the value of ${\alpha}$ and by decreasing the value of ${\beta}$ of the buckling-restrained braces, the maximum deformation demand of the structures increased.