• Title/Summary/Keyword: Buckling Test

Search Result 501, Processing Time 0.018 seconds

Optimization of the Truss Structures Using Member Stress Approximate method (응력근사해법(應力近似解法)을 이용한 평면(平面)트러스구조물(構造物)의 형상최적화(形狀最適化)에 관한 연구(研究))

  • Lee, Gyu Won;You, Hee Jung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.73-84
    • /
    • 1993
  • In this research, configuration design optimization of plane truss structure has been tested by using decomposition technique. In the first level, the problem of transferring the nonlinear programming problem to linear programming problem has been effectively solved and the number of the structural analysis necessary for doing the sensitivity analysis can be decreased by developing stress constraint into member stress approximation according to the design space approach which has been proved to be efficient to the sensitivity analysis. And the weight function has been adopted as cost function in order to minimize structures. For the design constraint, allowable stress, buckling stress, displacement constraint under multi-condition and upper and lower constraints of the design variable are considered. In the second level, the nodal point coordinates of the truss structure are used as coordinating variable and the objective function has been taken as the weight function. By treating the nodal point coordinates as design variable, unconstrained optimal design problems are easy to solve. The decomposition method which optimize the section areas in the first level and optimize configuration variables in the second level was applied to the plane truss structures. The numerical comparisons with results which are obtained from numerical test for several truss structures with various shapes and any design criteria show that convergence rate is very fast regardless of constraint types and configuration of truss structures. And the optimal configuration of the truss structures obtained in this study is almost the identical one from other results. The total weight couldbe decreased by 5.4% - 15.4% when optimal configuration was accomplished, though there is some difference.

  • PDF