• Title/Summary/Keyword: Bucket Motion

Search Result 23, Processing Time 0.03 seconds

A Study of a Hydraulic Excavator's Test to Verify of Payload Estimation by Bucket's Motion Equation (유압 굴착기 실험을 통한 작업량 추정법 확인에 관한 연구)

  • Jeong, Hwang Hun;Lee, Min Su;Shin, Young Il
    • Journal of Drive and Control
    • /
    • v.19 no.2
    • /
    • pp.11-16
    • /
    • 2022
  • It is important to measure the excavator's work productivity that estimates the bucket's payloads on a process. If the bucket isn't filled at every working cycle, the excavator's operator has to drive the machine more to achieve his work quota. If bucket is filled over with the load, the other way around, the transferred object has to spread out on the workplace. That causes additional work to clean the site. This paper proposes a method that can estimate the bucket's payload to improve the excavator's work productivity. This method assumes that the excavator is a lumped mass system. And it uses a 3 points angle (boom link, arm link, swing) and 2 points pressure (boom cylinder's input port and output port) of measurable data. Depending on assumptions, the bucket's payload can be calculated by the payload's motion equation. And this suggested method can be verified by simple experiments.

Cows per Man-Hour(CMPH) based on Time and Motion Studies for various Milking Systems (착유시설 형태에 따른 착유 노동생산성에 관한 연구)

  • 정태영;김형화;김동일;이정호;이홍표;김종민;이연섭
    • Journal of Animal Environmental Science
    • /
    • v.3 no.2
    • /
    • pp.87-95
    • /
    • 1997
  • This study was peformed to compare work routine time and performance of milking systems by measuring motion and time in milking procedure. Data were collected from thirteen dairy farms among which milking was done by bucket in two farms, by pipelines in three, by tandem parlors in four including one remodeled side-opening, by herringborn parlors in three and by a parallel milking parlor. Recording time and motion for milking parlor. Recording time and motion for milking procedure was performed by stopwatch and notebook computer. Work routine elements were recorded and calculated into cows milked per-man-hour(CMPH). The results are as follows : Average milking time per cow(MTPC) in bucket and pipeline milking systems usually installed in cow stall were 442.7 and 395.8 seconds, respectively. And average CMPH of bucket and pipeline milking system were 144.5, 303.3, 272.5 and 380.3 seconds, respectively. And CMPH of tandem, herringbone, parallel and modified side-opening systems were 24.9, 11.9, 13.2 and 9.5 heads, respectively. CMPH was the highest in the tandem milking system and the lowest in the bucket milking facilities. CMPH, when milked in a parlor resulted in high value compared with bucket or pipeline milking systems installed in cow stable. They showed considerably low CMPH compared with the results of other countries. The reason why so low CMPH could be derived from type and mechanization of facilities and equipment, operator's ability, number of operator, idle time and milking procedure.

A Study on Excavation Path Design of Excavator Considering Motion Limits (실차의 거동한계를 고려한 굴착기의 굴착 경로설계 연구)

  • Shin, Dae Young
    • Journal of Drive and Control
    • /
    • v.18 no.2
    • /
    • pp.20-31
    • /
    • 2021
  • An excavator is a construction machine that can perform various tasks such as trenching, piping, excavating, slope cutting, grading, and rock demolishing. In the 2010s, unmanned construction equipment using ICT technology was continuously developed. In this paper, the path design process was studied to implement the output data of the decision stage, and the path design algorithm was developed. For example, the output data of the decision stage were terrain data around the excavator, excavator mechanism information, excavator hydraulic information, the position and posture of the bucket at key points, the speed of the desired bucket path, and the required excavation volume. The result of the path design was the movement of the hydraulic cylinder, boom arm, bucket, and bucket edge. The core functions of the path design algorithm are the function of avoiding impact during the excavation process, the function to calculate the excavation depth that satisfies the required excavation volume, and the function that allows the bucket to pass through the main points of the excavation process while maintaining the speed of the desired path. In particular, in the process of developing the last function, the node tracking method expressed in the path design table was newly developed. The path design algorithm was verified as this path design satisfied the JCMAS H02 requirement.

A Study on the Deviation of Bucket Behavior Considering the Effect of Clearance in the Excavator (굴삭기 상부작업체에서 틈새에 의한 버켓의 거동 편차에 대한 연구)

  • Shin, Dae Young;Kang, Tae Gon
    • Journal of Drive and Control
    • /
    • v.16 no.4
    • /
    • pp.9-15
    • /
    • 2019
  • Bucket trajectory is crucial regarding precision work with an excavator. In general, the bucket trajectory deviation is determined by the machining deviation of the frame, driving deviation of the driving hydraulic cylinder, clearance in the joints, and deformation of the structure. This paper investigated the relationship between the respective clearance in joints and the trajectory deviation of the bucket at the finishing work of the ditching for a 20-ton excavator. As a result, the larger the clearance, the larger deviation is increased at trajectory. However, it was found that the deviation of the rotation angle and displacement of the bucket was limited and the size of clearance does not affect closely on the contact angle of the pin shaft.

A Study on Position Recognition of Bucket Tip for Excavator (굴삭기의 버킷 끝단 위치인식에 관한 연구)

  • Kim, Jae Hoon;Bae, Jong Ho;Jung, Woo Yong
    • Journal of Drive and Control
    • /
    • v.13 no.1
    • /
    • pp.49-53
    • /
    • 2016
  • The accurate calculation of bucket tip position has a large influence on showing the motion of an excavator on the display device of the excavator and controlling the excavator automatically. It is generally known that Inertial Measurement Unit (IMU) sensors are more accurate than accelerometer-based sensors while the boom, arm or bucket moves because additional forces beyond gravity add additional acceleration to the sensors. To prove the accuracy difference between the two types of sensors, a position recognition system using an accelerometer-based sensor and an IMU sensor is implemented on the excavator. The experimental results show that the system using the IMU sensor significantly reduces the position recognition error while bucket moves and additional force beyond gravity exists.

Study on the Static/Dynamic Measurements and Structural Analysis Procedure of Wheel Loaders (휠로더의 정적/동적 실차 계측 및 강도 평가법에 대한 연구)

  • Choung, Joon-Mo;Kim, Gyu-Sung;Jang, Young-Sik;Choe, Ick-Hung;Heo, Min-Soo
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1303-1309
    • /
    • 2003
  • This paper presents the static and dynamic measurements for the strength and motion characteristics as well as the improved procedures to assess strength of wheel loaders. Two scenarios for static measurement were decided by which cylinder was actuating. The dynamic measurement was performed for two types of motion, that is, simple reciprocation of the working devices and actual working motion including traveling, digging and dumping. The measured items were stresses, cylinder pressures and strokes. Stress induced by bucket working showed higher level than that by boom working. The measured cylinder speeds were relatively superior to the design speeds. Working stress histories were thought to be closer to static rather than dynamic. A fully assembled FE model was prepared for structural analysis. In this paper, a more simple method was suggested to avoid nonlinearity caused by heave of rear frame under digging forces. Also how brake affected on structural behavior and digging force was examined closely in relation with tire pressure. It was confirmed that the overall stress level of wheel loader during turning traveling with loaded bucket was far lower than the yield stress of material.

  • PDF

Disabled Alpine Ski Athlete's Kinematic Characteristic Changes by Computer Aided Design Based Mono Ski Bucket: A Case Study (컴퓨터 디자인 기반 모노스키 버킷 사용에 따른 장애인 알파인 스키 선수의 운동학적 특성 변화 연구: 사례 연구)

  • Koo, Dohoon;Eun, Seondeok;Hyun, Boram;Kweon, Hyosun
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.4
    • /
    • pp.425-433
    • /
    • 2014
  • The purpose of the study was to investigate the effect of CAD (Computer Aided Design) based alpine mono-ski bucket design on disabled ski athletes' kinematic characteristics. Two national team ski athletes with LW11 disabilities (Locomotion Winter Classification) category for sit ski participated in both pre and post experiment. Both of the subjects performed 3 trials of carved turn on a ski slope under two conditions. Where, subject "A" performed pre experiment with personal bucket and post experiment with the newly developed CAD based bucket whereas, Subject "B" as control subject performed both pre and post experiment with his personal bucket. For the experiment, 24 Infrared cameras were positioned on the ski slope which covered the path of the ski turn. Also, motion capture suit with reflective markers were worn by both subjects. In the result, decrement in medial/lateral displacement of COM, anterior/posterior displacement of COM, flexion/extension angle of trunk as well as velocity losing rate of COM was observed in subject "A" when using the newly developed CAD based bucket. In contrast, no larger effect on performance was observed when using personal buckets. In conclusion, the findings obtained from the study indicated effectiveness of newly developed CAD based bucket by reducing excessive movement of hip and trunk which is an important factor to perform an effective turn.

A Study on the Bucket Loading Characteristics for Wheel-loader Loading Automation (휠로더 굴착 자동화를 위한 버킷 부하특성 연구)

  • Seo, Dong-Kwan;Seo, Hyun-Jae;Kang, In-Pil;Kwon, Young-Min;Lee, Sang-Hoon;Hwang, Sung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.11
    • /
    • pp.1332-1340
    • /
    • 2009
  • The front end wheel loader is widely used for the loading of materials in mining and construction fields. It has repetitive digging, loading and dumping procedures. The bucket is subjected to large resistance force from the soil during scooping. We considered the soil reaction force characteristics from scooping procedure, the protection by overload and automatic scooping mode algorithm. The main topic of this paper is the analysis of the soil reaction force characteristics. The analysis of soil mechanics is carried out and the developed soil model is verified by experimental results from the simplified experimental equipment. A simplified model of the soil shape and bucket trajectory is used to determine the scooping direction based on an estimation of the resistance force applied on the bucket during the scooping motion. In the future, this model will be used for the generation of an appropriate path for the wheel loader automation.

Soil-structure interaction analysis for the offshore wind tower with bucket foundation (버켓기초를 가진 해상풍력타워의 지반-구조물 상호작용해석)

  • Lee, Gyehee;Kim, Sejeong;Phu, Tranduc
    • Journal of the Society of Disaster Information
    • /
    • v.10 no.2
    • /
    • pp.244-252
    • /
    • 2014
  • In this study, seismic responses of the offshore wind tower supported by bucket foundation are analyzed in consideration of soil-structure interaction. The program SASSI is used as analyzing tool and an artificial seismic input for soft soil is used as input motion. The H/R ratio of bucket, the stiffness of bucket foundation and the soil stiffness are considered as parameters and its effects are estimated. The responses of structure are obtained at the base and the nacell. As results, the effects of H/R ratio, the stiffness of bucket and the stiffness of site are generally denoted different response tendency at the base and the nacell. However, these whole responses of the base and the nacell are much lager than that of rock site. Therefore, the consideration of this phemomia affect to the response of offshore wind tower with bucket foundation largely.

Bucket Handle Type Fracture of the Glenoid (Bucket Handle양상의 관절와 골절 - 증례보고-)

  • Shin, Sang-Jin;Kim, Sung-Jae;Kang, Ho-Jung
    • Clinics in Shoulder and Elbow
    • /
    • v.6 no.1
    • /
    • pp.80-84
    • /
    • 2003
  • We report a patient with an anterior dislocation of the shoulder with uncommon bucket handle type fracture of the anterior glenoid fossa with intact glenoid labrum. The fracture fragment was displaced into the posterior aspect of the glenohumeral joint resulting in prevention of reduction of the shoulder. Excellent fixation was obtained with suture anchors and bioabsorbable interfragmentary screws. This allowed stable range of motion exercises, optimizing the patient's functional outcome.