• Title/Summary/Keyword: Bucket Brigade Algorithm

Search Result 4, Processing Time 0.021 seconds

A Study on a Comb Filter Bank Circuit using B.B.D. (B.B.D.를 이용한 콤필터 뱅크회로에 관한 연구)

  • 이광형
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.7 no.4
    • /
    • pp.156-160
    • /
    • 1982
  • A Comb Filter(C.F.) is constucted with a N-stages one-dimensional B.B.D.(Bucket-Brigade Device) delay line. One channel of the B.P.F. (Band Pass Filter) Bank is experimented, which includes a R.F.(Recursie Filter) using S/H circuits cascaded to the C.F. This algorithm of the C.F.B.(Comb Filter Bank) becomes the parallel spectrum analyzer circuit. The algorithm has less number of multiplication than that of FFT and improves the SNR.

  • PDF

Fuzzy Classifier System for Edge Detection

  • Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.1
    • /
    • pp.52-57
    • /
    • 2003
  • In this paper, we propose a Fuzzy Classifier System(FCS) to find a set of fuzzy rules which can carry out the edge detection. The classifier system of Holland can evaluate the usefulness of rules represented by classifiers with repeated learning. FCS makes the classifier system be able to carry out the mapping from continuous inputs to outputs. It is the FCS that applies the method of machine learning to the concept of fuzzy logic. It is that the antecedent and consequent of classifier is same as a fuzzy rule. In this paper, the FCS is the Michigan style. A single fuzzy if-then rule is coded as an individual. The average gray levels which each group of neighbor pixels has are represented into fuzzy set. Then a pixel is decided whether it is edge pixel or not using fuzzy if-then rules. Depending on the average of gray levels, a number of fuzzy rules can be activated, and each rules makes the output. These outputs are aggregated and defuzzified to take new gray value of the pixel. To evaluate this edge detection, we will compare the new gray level of a pixel with gray level obtained by the other edge detection method such as Sobel edge detection. This comparison provides a reinforcement signal for FCS which is reinforcement learning. Also the FCS employs the Genetic Algorithms to make new rules and modify rules when performance of the system needs to be improved.

Learning Rules for AMR of Collision Avoidance using Fuzzy Classifier System (퍼지 분류자 시스템을 이용한 자율이동로봇의 충돌 회피학습)

  • 반창봉;심귀보
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.5
    • /
    • pp.506-512
    • /
    • 2000
  • In this paper, we propose a Fuzzy Classifier System(FCS) makes the classifier system be able to carry out the mapping from continuous inputs to outputs. The FCS is based on the fuzzy controller system combined with machine learning. Therefore the antecedent and consequent of a classifier in FCS are the same as those of a fuzzy rule. In this paper, the FCS modifies input message to fuzzified message and stores those in the message list. The FCS constructs rule-base through matching between messages of message list and classifiers of fuzzy classifier list. The FCS verifies the effectiveness of classifiers using Bucket Brigade algorithm. Also the FCS employs the Genetic Algorithms to generate new rules and modifY rules when performance of the system needs to be improved. Then the FCS finds the set of the effective rules. We will verifY the effectiveness of the poposed FCS by applying it to Autonomous Mobile Robot avoiding the obstacle and reaching the goal.

  • PDF

Learning of Fuzzy Rules Using Fuzzy Classifier System (퍼지 분류자 시스템을 이용한 퍼지 규칙의 학습)

  • Jeong, Chi-Seon;Sim, Gwi-Bo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.37 no.5
    • /
    • pp.1-10
    • /
    • 2000
  • In this paper, we propose a Fuzzy Classifier System(FCS) makes the classifier system be able to carry out the mapping from continuous inputs to outputs. The FCS is based on the fuzzy controller system combined with machine learning. Therefore the antecedent and consequent of a classifier in FCS are the same as those of a fuzzy rule. In this paper, the FCS modifies input message to fuzzified message and stores those in the message list. The FCS constructs rule-base through matching between messages of message list and classifiers of fuzzy classifier list. The FCS verifies the effectiveness of classifiers using Bucket Brigade algorithm. Also the FCS employs the Genetic Algorithms to generate new rules and modify rules when performance of the system needs to be improved. Then the FCS finds the set of the effective rules. We will verify the effectiveness of the poposed FCS by applying it to Autonomous Mobile Robot avoiding the obstacle and reaching the goal.

  • PDF