• 제목/요약/키워드: Bubble distribution

검색결과 158건 처리시간 0.025초

Experiments on Sedimentation of Particles in a Water Pool with Gas Inflow

  • Kim, Eunho;Jung, Woo Hyun;Park, Jin Ho;Park, Hyun Sun;Moriyama, Kiyofumi
    • Nuclear Engineering and Technology
    • /
    • 제48권2호
    • /
    • pp.457-469
    • /
    • 2016
  • During the late phase of severe accidents of light water reactors, a porous debris bed is expected to develop on the bottom of the flooded reactor cavity after breakup of the melt in water. The geometrical configuration, i.e., internal and external characteristics, of the debris bed is significant for the adequate assessment of the coolability of the relocated corium. The internal structure of a debris bed was investigated experimentally using the DAVINCI (Debris bed research Apparatus for Validation of the bubble-Induced Natural Convection effect Issue) test facility. Particle sedimentation under the influence of a two-phase natural convection flow due to the decay heat in the debris bed was simulated by dropping various sizes of particles into a water vessel with air bubble injection from the bottom. Settled particles were collected and sieved to obtain the particle mass, size distribution in the radial and axial positions, and the bed porosity and permeability. The experimental results showed that the center part of the particle bed tended to have larger particles than the peripheral area. For the axial distribution, the lower layer had a higher fraction of larger particles. As the sedimentation progressed, the size distribution in the upper layers can shift to larger sizes because of the higher vapor generation rate and stronger flow intensity.

방사선치료 장치 및 관련시설에서의 산란 중성자에 관한 연구 (A Study on the Neutron in Radiation Treatment System and Related Facility)

  • 김대섭;김정만;이희석;임라승;김유현
    • 대한방사선치료학회지
    • /
    • 제17권2호
    • /
    • pp.141-145
    • /
    • 2005
  • 목 적 : 일반적으로 10 MV이상의 광자선에서 산란 중성자를 발생시키는 것으로 알려져 있다. 세관에 설치된 컨테이너 검색장치는 9 MV 이하였음에도 중성자가 누출되었다. 본 연구에서 의료기관에 설치된 방사선 치료기에서 산란 방출되는 중성자의 공간적인 측정을 통해 결과를 분석하고 평가하고자 한다. 대상 및 방법 : 본 연구의 방사선 발생장치는 의료용 선형가속기(linear accelerator, linac: Varian, Clinac 1800, USA)를 사용하였다. 중성자 측정용 검출기는 중성자가 발생하면 기포(bubble)이 생기는 Bubble 검출기(Bubble detector, BDPND type, BTI, Canada)를 사용하였다. 의료용 선형가속기 주변에 Bubble 검출기를 isocenter로부터 30 cm, 50 cm, 120 cm의 각각 3가지 거리별로 isocenter 상하 방향 네 곳에 위치시켜 측정하였다. 주변 구조물의 영향을 살펴보기 위해 Wedge와 Mount를 장착 후 50 cm 거리에서 각각 8방향에서 측정하였다. 광자선원부터 isocenter 까지의 거리(SAD: source-axis-distance)를 100 cm로 기준을 정하고 조사면의 크기(field size)는 $15{\times}15cm^2$로 정하였다. 방사선은 20 MU를 조사하여 Bubble 검출기에 발생한 기포수를 측정하며 mrem값으로 계산하였다. 결 과 : Isocenter부터 거리가 30 cm와 50 cm 떨어진 곳의 각각 8개 측정 지점 중에서는 모두 5번 위치(Gantry 우측 아래지점)에서 측정된 산란중성자의 양이 같은 거리라도 가장 높게 측정되었다. Bubble 검출기가 Isocenter부터 120 cm 떨어진 경우와 wedge를 장착한 경우는 7번 위치(Couch 우측 아래지점), mount 탈착한 경우는 2번 위치(Gantry 왼쪽 윗지점)에서 산란 중성자가 가장 높게 측정되었다. 결 론 : 산란중성자의 측정에서 직선상 같은 거리에 있는 곳이라도, 실제 측정한 결과 값에 따르면 서로 상이한 값을 보였다. 주변 구조물도 산란 중성자에 영향을 미치며, 직선상은 같은 거리라도 각각의 지점에서 다른 값을 보였다. 따라서, 산란중성자의 거리에 따른 영향은 단순히 직선으로의 거리뿐 아니라 방향과 주변 구조물에 대한 영향까지 고려하며 공간적인 측정과 평가가 필요하다.

  • PDF

슬릿노즐기반 응집·공기부상공정을 통한 유류폐수 전처리 (Pre-treatment of oily wastewater using a coagulation-DAF process with slit-nozzle)

  • 최상기;김영모
    • 상하수도학회지
    • /
    • 제32권6호
    • /
    • pp.479-485
    • /
    • 2018
  • Large amounts of oily wastewater discharged from various industrial operations (petroleum refining, machinery industries and chemical industries) cause serious pollution in the aquatic environment. Although dissolved air flotation (DAF) separating oil pollutants using microbubbles represents current practice, bubble size cannot be selectively controlled, and lots of power is required to generate microbubbles. Therefore, to investigate performance of the DAF process, this study examined the distribution of different sizes of microbubbles resulting from changes in physical shear force via modifying shapes of a slit-nozzle without an additional power supply. Three types of slit-nozzles (different angle, shape and length of the slit-nozzle) were used to analyze the distribution of bubble size. At a slit angle of $60^{\circ}$, shear force was 4.29 times higher than a conventional slit, and particle size distribution (PSD) in the range between 2 and $20{\mu}m$ more than doubled. Treatment efficiency of synthetic oily wastewater through the coagulation-DAF process achieved 90% removal of COD by injecting $FeCl_3$ and PACl of 250 mg/L and 100 mg/L, respectively, and the same performance resulted using $FeCl_3$ of 200 mg/L and PACl of 80 mg/L employing a slit-nozzle angle of $60^{\circ}$. This study shows that a coagulation-DAF process using a modified slit-nozzle can improve the pre-treatment of oily wastewater.

Bubble occurrence and interhemispheric plasma transport

  • Park, Jaeheung;Lee, Jae-jin;Lee, Ensang;Min, Kyoung-Wook
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2004년도 한국우주과학회보 제13권1호
    • /
    • pp.72-72
    • /
    • 2004
  • We have compared here the seasonal average of the plasma density with the EPB occurrence in a given longitude sector, using KOMPSAT-1 and DMSP data. It could be evidenced on a global scale that the EPB occurrence was nearly anti-correlated with the poleward drift speed parallel to B-field, and with the degree of asymmetry of the latitudinal plasma distribution. But, the seasonal-longitudinal change of the asymmetry was different from what the current theory expected. (omitted)

  • PDF

용질배제 곡선에 의한 한외여과 막의 세공특성 예측 (Prediction of Intrinsic Pore Properties of Ultrafiltration Membrane by Solute Rejection Curves)

  • 염경호
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1991년도 추계 총회 및 학술발표회
    • /
    • pp.4-8
    • /
    • 1991
  • The characterization of pore properties (mean pore size and pore size distribution) of the active layer in a UF membrane is important not only in order to obtain information about the factors affecting pore formation during membrane manufacturing but also to understand deeply the mechanism of solute and solvent transport through pores. Many methods of characterizing quantitatively the pore properties of UF membranes have been suggested in the literature: solvent and gas flow measurement, bubble point determination, electron microscopy, gas adsorption/desorption measurement, rejection measurement etc. But most of these methods involve time-consuming procedures and involve some wellknown problems and uncertainties.

  • PDF

수적(垂滴)법을 이용한 이산화탄소 지중저장 조건에서의 염수-이산화탄소 간 계면장력 측정 (Measuring Interfacial Tension between Brine and Carbon Dioxide in Geological CO2 Sequestration Conditions using Pendant Bubble Methods)

  • 박규령;안혜진;김선옥;왕수균
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제21권6호
    • /
    • pp.46-55
    • /
    • 2016
  • This experimental study was aimed to estimate interfacial tension of brine-$CO_2$ by using a pendant bubble method and image analysis. Measurements were performed for wide ranges of temperatures, pressures, and salinities covering reservoir conditions in Pohang basin, a possible candidate for $CO_2$ storage operation in Korea. The profiles of $CO_2$ bubbles in brine obtained from image analysis with the densities of brine and $CO_2$ from previous studies were applied to Laplace-Young equation for calculating interfacial twnsion in brine-$CO_2$ system. The experimental results reveals that the interfacial tension is significantly affected by reservoir conditions such as pressure, temperature and water salinity. For conditions of constant temperature and water salinity, the interfacial tension decreases as pressure increases for low pressures (P < $P_c$), and approaches to a constant value for high pressures. For conditions of constant pressure and water salinity, the interfacial tension increases as temperature increases for T < $T_c$, with an asymptotic trend towards a constant value for high temperatures. For conditions of constant pressure and temperature, the interfacial tension increases with increasing water salinity. The trends in changes of interfacial tension can be explained by the effects of the reservoir conditions on the density difference of brine and $CO_2$, and the solubility of $CO_2$ in brine. The information on interfacial tensions obtained from this research can be applied in predicting the migration and distribution of injecting and residual fluids in brine-$CO_2$-rock systems in deep geological environments during geological $CO_2$ sequestrations.

기체가 주입된 원통형 용기내에서 기포유동에 관한 연구 (A Study on Bubbles Flow in the Gas-injected Cylindrical Bath)

  • 서동표;박근욱;오율권
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.393-396
    • /
    • 2002
  • Submerged gas-injected system can be applied to various industrial field such as metallurgical and chemical processes, So this study aims at presenting the relevant relationship between gas phase and liquid phase in a gas-injected bath. In a cylinderical bath, local gas volume fraction and bubble frequency were measured by electroconductivity probe and oscilloscope. The temperature of each phase was measured using thermocouple and data acquisition system. In vertical gas injection system, gas-liquid two phase plume was formed, being symmetry to the axial direction of injection nozzle and in a shape of con. Lacal gas-liquid flow becomes irregular around the injection nozzle due to kinetic energy of gas and the flow variables show radical change at the vicinity of gas(air) injection nozzle As most of the kinetic energy of gas was transferred to liquid in this region, liquid started to circulate. In this reason, this region was defined as 'developing flow region' The Bubble was taking a form of churn flow at the vicinity of nozzle. Sometimes smaller bubbles formed by the collapse of bubbles were observed. The gas injected into liquid bath lost its kinetic energy and then was governed by the effect of buoyancy. In this region the bubbles which lost their kinetic energy move upward with relatively uniform velocity and separate. Near the gas nozzle, gas concentration was the highest. But it started to decrease as the axial distance increased, showing a Gaussian distribution.

  • PDF

소결 메쉬를 이용한 원통형 수중운동체 항력 감소 연구 (A Study on Drag Reduction of Cylindrical Underwater Body Using Sintered Mesh)

  • 정철민;백부근;김경열;정영래
    • 한국군사과학기술학회지
    • /
    • 제21권2호
    • /
    • pp.195-203
    • /
    • 2018
  • Among the techniques of reducing the drag to increase the speed of underwater moving bodies, we studied on the drag reduction method by gas injection. Researches on gas injection method have been paid much attention to reduce the drag of vessels or pipe inner walls. In this study, we used a sintered metal mesh that can uniformly distribute fine bubbles by gas injection method, and applied it to a cylindrical underwater moving body. Using the KRISO medium-sized cavitation tunnel, we measured both the bubble size on the surface of the sintered mesh and the bubble distribution in the boundary layer. Then, drag reduction tests were performed on the cylinder type underwater moving models with cylindrical or round type tail shape. Experiments were carried out based on the presence or absence of tail jet injection. In the experiments, we changed the gas injection amount using the sintered mesh gas injector, and changed flow rate accordingly. As a result of the test, we observed increased bubbles around the body and confirmed the drag reduction as air injection flow rate increased.

Investigation of subcooled boiling wall closures at high pressure using a two-phase CFD code

  • Alatrash, Yazan;Cho, Yun Je;Song, Chul-Hwa;Yoon, Han Young
    • Nuclear Engineering and Technology
    • /
    • 제54권6호
    • /
    • pp.2276-2296
    • /
    • 2022
  • This study validates the applicability of the CUPID code for simulating subcooled wall boiling under high-pressure conditions against number of DEBORA tests. In addition, a new numerical technique in which the interfacial momentum non-drag forces are calculated at the cell faces rather than the center is presented. This method reduced the numerical instability often triggered by calculating these terms at the cell center. Simulation results showed good agreement against the experimental data except for the bubble sizes in the bulk. Thus, a new model to calculate the Sauter mean diameter is proposed. Next, the effect of the relationship between the bubble departure diameter (Ddep) and the nucleation site density (N) on the performance of the Wall Heat Flux Partitioning (WHFP) model is investigated. Three correlations for Ddep and two for N are grouped into six combinations. Results by the different combinations show that despite the significant difference in the calculated Ddep, most combinations reasonably predict vapor distribution and liquid temperature. Analysis of the axial propagations of wall boiling parameters shows that the N term stabilizes the inconsistences in Ddep values by following a behavior reflective of Ddep to keep the total energy balance. Moreover, ratio of the heat flux components vary widely along the flow depending on the combinations. These results suggest that separate validation of Ddep correlations may be insufficient since its performance relies on the accompanying N correlations.

건물 외벽 패널용 경량기포콘크리트(AAC)의 CaO/$SiO_2$ 혼합비에 따른 강도 특성 평가 (Strength Characteristics according to the mixed CaO/$SiO_2$ Ratio to Autoclaved Aerated Concrete(AAC) used on the Exterior Panel in Buildings)

  • 김영호
    • 한국디지털건축인테리어학회논문집
    • /
    • 제11권3호
    • /
    • pp.35-42
    • /
    • 2011
  • The exterior system of buildings, which is the typical curtain wall, has been made with glass and metal. Theses materials, however, have weaknesses such as inadequate insulating quality, short durability, combustibility and toxic substance. On the other hand, Autoclaved Aerated Concrete(AAC) or Autoclaved Lightweight Concrete(ALC) possess the great energy efficiency and the superb insulating quality as substitute of existing exterior system materials. In this research, strength characteristics and bubble dispersion of hydrothermal synthesis process of AAC based on CaO/$SiO_2$(C/S) ratio are analyzed. C/S ratio is determinated and bubble distribution and compressive strength are studied through the test of varied water-to-solid mineral ratio(W/S). In hydrothermal synthesis program, final C/S ratio is determined as 0.7 consider of the manufacturing process and hydrothermal synthesis is done at $180^{\circ}C$ for 7 hours. The analysis shows slurry has about 2,300cP viscosity and 0.56 specific gravity therefore it is expected AAC has the appropriate facility in the manufacturing process and Hydrates of AAC's Expansion.