• Title/Summary/Keyword: Bubble Size

Search Result 323, Processing Time 0.024 seconds

Analysis of the foaming behavior in pultrusion process of phenolic foam composites (발포 복합재료 Pultrusion 공정에서의 발포 거동 해석)

  • Yun, Myung-Seok;Jung, Jae-Won;Lee, Woo-Il
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.130-133
    • /
    • 2005
  • An experimental and theoretical study was carried out to estimate the foaming characteristics in the pultrusion process of phenolic foam composite. For the experimental study, a lab-scale pultrusion apparatus was constructed. Methylene chloride(CH2Cl2) was used as a physical blowing agent, glass fiber roving was used as reinforcement and the polymer used was a resol type phenolic resin. Pultruded products were observed to count bubble size by a SEM(Scanning Electron Microscopy). For the theoretical study, a model for bubble growth in a gradually hardening resin was considered and solved for a few foaming conditions.

  • PDF

The Synthesis of $BaTiO_3$ using continuous process in a bubble column reactor (기포탑반응기에서 연속공정을 이용한 $BaTiO_3$ 분말의 제조)

  • 현성호;김정환;허윤행
    • Journal of environmental and Sanitary engineering
    • /
    • v.11 no.1
    • /
    • pp.63-70
    • /
    • 1996
  • The synthesis of high purity and ultra-fine $BaTiO_3$ by precipitation with gaseous $NH_3$ as precipitator was investigated to find an alternative process to solve various problems of recent wet methods. A synthesis process for $BaTiO_3$ powder using $NH_3$ gas as a precipitator in a bubble column reactor was experimentally successful in developing the production process of piezoelectric ceramic $BaTiO_3$ powder. And a 2.33m1/sec is approprite for the feed flow rate, $BaTiO_3$ powder produced under above the condition is spherical type, its particle size was about $0.2{\mu}m$.

  • PDF

Electro-Plating Properties of Au Coplanar Waveguide Electrode for High-Speed Optical Modulation (초고속 광변조기를 위한 Au coplanar waveguide 전극의 도금 특성)

  • 이승태;양우석;김우경;이한영;장호정
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.140-140
    • /
    • 2003
  • Ti:LiNbO$_3$ 광 도파로를 이용한 광 변조기의 마이크로파 손실을 감소시키고 RF와 광파의 속도정합의 조건하에서 초고속 광변조의 제작을 위해서는 두꺼운 TW(travelling wave) 전극이 필수적이다 또한, 두꺼운 Au 전극이 우수한 RF 특성을 갖기 위해서는 도금된 Au 전극이 고순도의 작은 grain size를 갖는 도금 층을 제조하여야 하며, 도금 후 Au 층의 뒤틀림 현상이 작아야 한다. 따라서, 본 연구에서는 LiNbO$_3$ 기판 위에 30nm Ni-Cr과 50nm의 Au의 기저 막을 올렸으며 감광제를 이용한 photo-lithography 공정으로 CPW(coplanar waveguide) 구조의 패턴을 약 13$\mu\textrm{m}$의 두께로 형성 한 후 non-cyanidic 액을 이용하여 전류밀도 0.02 - 0.06 mA, bubble 및 non-bubble flow를 조건으로 하여 도금된 Au 전극의 특성을 관찰하였다.

  • PDF

A Revision of Bubble Size of Ladle Hot Images by Mode Method (모드법에 의한 Ladle 열영상의 버블크기 보정)

  • Kim, Tae-Soo;Chun, Joong-Chang
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.561-564
    • /
    • 2008
  • 본 논문에서 제안하는 버블(Bubble) 크기 보정 기법은 영상의 히스토그램의 모드법에 의한 최적의 임계값을 결정함으로써 버블의 크기를 정확하게 측정하는 기술이다. 제안하는 기술은 Ladle 탕면을 관측할 수 있는 CCD 카메라에 의한 측정시스템을 구현하며, 관측된 영상으로부터 방면거리, 버블크기 등을 알고리듬에 의해 구하여 탕의 용강 성분을 제어하기 위한 데이터를 제공하기 위하여 전송하게 된다. 본 논문에서 제안한 기법을 적용하여 실험한 결과 기존의 알고리듬에 의한 단순한 계산 및 히스토그램의 중간치 계산에 의한 결과와 비교하여 0.9%의 오차범위에서 개선된 버블크기를 얻을 수 있었다.

  • PDF

Stable In-reactor Performance of Centrifugally Atomized U-l0wt.%Mo Dispersion Fuel at Low Temperature

  • Kim, Ki-Hwan;Kwon, Hee-Jun;Park, Jong-Man;Lee, Yoon-Sang;Kim, Chang-Kyu
    • Nuclear Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.365-374
    • /
    • 2001
  • In order to examine the in-reactor performance of very-high-density dispersion fuels for high flux performance research reactors, U-l0wt.%Mo microplates containing centrifugally atomized powder were irradiated at low temperature. The U-l0wt.%Mo dispersion fuels show stable in- reactor irradiation behaviors even at high burn-up, similar to U$_3$Si$_2$ dispersion fuels. The atomized U-l0wt.%Mo fuel particles have a fine and a relatively uniform fission gas bubble size distribution. Moreover, only one of third of the area of the atomized fuel cross-sections at 70a1.% burn-up shows fission gas bubble-free zones, This appears to be the result of segregation into high Mo and low Mo.

  • PDF

A Study on the Interaction between Particles and Surrounding Fluid (입자와 주위유체와의 상호작용에 관한 연구)

  • ;T.Kurihara;H. Monji;G. Matsui
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.2
    • /
    • pp.108-115
    • /
    • 2002
  • The fundamental mechanism of a dispersed two-phase flow was investigated. Experiments were carried out to understand how the particles behaves under the influence of the particle size, shape, metamorphoses (bubble) and buoyancy of a single particle which is ascending from the standstill water. Two CCD cameras were employed for image processing of the behavior of the particles and the surrounding flow, which was interpreted with the technique of correlation PIV (Particle Image Velocimetry) and PTV (Particle Tracking Veloci- metry), respectively The experimental results showed that the large density difference bet- ween a particle and water caused high relative velocity and induced zigzag motion of the particle. Furthermore, the turbulence intensity of a bubble was about twice the case of the spherical solid particle of similar diameter.

A Review of Heat and Mass Transfer Analysis for Absorption Process

  • Kim, Jin-Kyeong;Kang, Yong-Tae
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.14 no.4
    • /
    • pp.131-137
    • /
    • 2006
  • The absorber in which heat and mass transfer phenomena occur simultaneously is one of the most critical components in the absorption system. It has the most significant influence on the performance and the size of the absorption system. During the absorption process, heat and mass transfer resistances exist in both liquid and vapor regions, so that the heat transfer mode should be carefully selected to reduce them. The objective of this paper is to review the previous papers analysing mathematical models of simultaneous heat and mass transfer phenomena during the absorption process. The most conventional working fluids ($H_2O$LiBr and $NH_3/H_2O$) are considered and the most common absorption modes (falling film and bubble mode) are dealt with in this review.

Morphological Change of Precipitated Calcium Carbonate by Reaction Rate in Bubble Column Reactor (기포탑 반응기에서 반응 속도에 따른 침강성 탄산칼슘의 모폴로지 변화)

  • Hwang, Jung Woo;Lee, Yoong;Lee, Dong Hyun
    • Korean Chemical Engineering Research
    • /
    • v.47 no.6
    • /
    • pp.727-733
    • /
    • 2009
  • Effects of $Ca(OH)_2$ concentration(0.16~0.64 wt%), total volumetric flow rate(3~6 L/min) and $CO_2$ volume fraction(0.3~0.6) on morphology of the precipitated $CaCO_3$ and the mean particle size of the precipitated $CaCO_3$ were investigated in the slurry bubble column reactor. Experiments were carried out in acrylic reactor($0.11m-ID{\times}1.0m-high$) with a internal tube($0.04m-ID{\times}1.0m-high$). The calibration curve on the mass ratio of $CaCO_3$ to $Ca(OH)_2$ was obtained by FT-IR for the conversion of $Ca(OH)_2$ with the reaction time. The reaction rate of $Ca(OH)_2$ increased with increasing the volumetric flow rate of $CO_2$. From SEM images, the crystal size of $CaCO_3$ increased with increasing the reaction rate in the saturated concentration of $Ca(OH)_2$ (0.16 wt%). In addition, the crystal size of precipitated $CaCO_3$ decreased with increasing the concentration of $Ca(OH)_2$, but the mean particle size of precipitated $CaCO_3$ increased with increasing the concentration of $Ca(OH)_2$.

Gas and Liquid Flow Characteristics in an Internal Circulation Airlift Reactor using a Single Nozzle -Effects of Flow Zone Sizes- (단일노즐을 사용한 내부순환 공기리프트 반응기에서 기체 및 액체의 유동특성 - 유동지역의 크기영향 -)

  • Jang, Sea-Il;Kim, Jong-Chul;Jang, Young-Joon;Son, Min-Il;Kim, Tae-Ok
    • Applied Chemistry for Engineering
    • /
    • v.9 no.6
    • /
    • pp.901-906
    • /
    • 1998
  • Gas and liquid flow characteristics were investigated in an internal circulation airlift reactor using a single nozzle for a gas distributor. In three reactors with different diameters of the downcomer and heights of the riser, the gas holdup in the individual flow zone and the impulseresponse curve of tracer for an air-water system were measured for various gas velocities and reactor heights. Experimental results showed that the flow behavior of bubbles in the riser was the slug flow due to strong coalescences of bubbles and that the bubble flow pattern in the downcomer was the transition bubble flow for the smaller diameter of the downcomer, however, it was the homogeneous bubble flow for the larger one. And mean gas holdups in the individual flow zone and the reactor were greatly increased with decreasing the diameter of the downcomer for the equal ratio of height of the top section to that of the riser. Also, the mixing time was much effected by the height of the top section of reactor and for the equal ratio of height of top section to that of the riser, it was increased with increasing the diameter of the downcomer and the height of the riser. Flow characteristics of liquid were mainly varied with the bubble flow pattern in the downcomer and the size of the top section of reactor. And circulation velocities of liquid in the riser were increased with increasing gas velocities and the size of the top section of reactor, and for the equal ratio of height of top section to that of the riser, they were increased with increasing the diameter of the downcomer and the height of the riser.

  • PDF

Some Observations on the Structural Developments of Bubbly Flow : Channel Size Effect

  • Song, Chul-Hwa;Chun, Se-Young;Chung, Moon-Ki;No, Hee-Cheon
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.10a
    • /
    • pp.321-326
    • /
    • 1995
  • The present study provides some experimental observations on the structural developments of bubbly flow and the void wave damping in vertical, circular channel with a large diameter, and discusses the channel size effect on them. It is observed that the developing mode of bubbly flow structures and its transition mechanism are influenced by the channel size as well as the bubble size, and that they are well revealed in the behavior of wave damping.

  • PDF