• Title/Summary/Keyword: Bubble Interface

Search Result 92, Processing Time 0.021 seconds

Numerical Study on Bubble Growth and Droplet Ejection in a Bubble Inkjet Printer (버블 잉크젯에서의 기포성장 및 액적분사에 관한 수치적 연구)

  • Suh, Young-Ho;Son, Gi-Hun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.11 s.254
    • /
    • pp.1107-1116
    • /
    • 2006
  • The droplet ejection process driven by an evaporating bubble in a thermal inkjet printhead is investigated by numerically solving the conservation equations for mass, momentum and energy. The phase interfaces are tracked by a level set method which is modified to include the effect of phase change at the interface and extended for multiphase flows with irregular solid boundaries. The compressibility effect of a bubble is also included in the analysis to appropriately describe the bubble expansion behaviour associated with the high pressure caused by bubble nucleation. The whole process of bubble growth and collapse as well as droplet ejection during thermal inkjet printing is simulated without employing a simplified semi-empirical bubble growth model. Based on the numerical results, the jet breaking and droplet formation behaviour is observed to depend strongly on the bubble growth and collapse pattern. Also, the effects of liquid viscosity, surface tension and nozzle geometry are quantified from the calculated bubble growth rate and ink droplet ejection distance.

DIRECT NUMERICAL SIMULATION OF IMMISCIBLE GAS BUBBLE DISPLACEMENT IN 2D CHANNEL (2차원 관내 유동에서 불활성 기체 제거과정의 직접 수치 해석)

  • Shin, S.
    • Journal of computational fluids engineering
    • /
    • v.12 no.3
    • /
    • pp.41-46
    • /
    • 2007
  • Dynamic behavior of immiscible gas bubble attached to the wall in channel flow plays very important role in many engineering applications. Special attention has been paid to micro direct methanol fuel cell(${\mu}$DMFC) where surface tension becomes dominant factor with minor gravitational effect due to its reduced size. Therefore, displacement of $CO_2$ bubble generating on a cathode side in ${\mu}$DMFC can be very difficult and efficient removal of $CO_2$ bubbles will affect the overall machine performance considerably. We have focused our efforts on studying the dynamic behavior of immiscible bubble attached to the one side of the wall on 2D rectangular channel subject to external shear flow. We used Level Contour Reconstruction Method(LCRM) which is the simplified version of front tracking method to track the bubble interface motion. Effects of Reynolds number, Weber number, advancing/receding contact angle and property ratio on bubble detachment characteristic has been numerically identified.

The Measurement of Bubble Driven Flow Using PIV and Digital Mask Technique (PIV 기법과 Digital Mask 기법을 적용한 버블유동 측정)

  • Kim, Sang-Moon;Kim, Hyun-Dong;Kim, Kyung-Chun
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2700-2703
    • /
    • 2008
  • An experiment on bubble-driven flow was performed in order to understand fundamental knowledge of flow structure around a rising bubble in a stagnant fluid. The measurement technique consists of a combination of the three most often used PIV techniques in multiphase flows: PIV with fluorescent tracer particles, the digital phase separation with a masking technique and a shadowgraphy. The key point of the measurement is that the background intensity of a PIV recording can be shifted to a higher level than a bubble region using a shadowgraphy in order to distinguish from fluorescent particles and a bubble as well. Flow fields were measured without an inaccurate analysis around a fluid-bubble interface by using only one camera simply.

  • PDF

Using a Lagrangian-Lagrangian approach for studying flow behavior inside a bubble column

  • YoungWoo Son;Cheol-O Ahn;SangHwan Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4395-4407
    • /
    • 2023
  • Bubble columns are widely encountered in several industries, especially in the field of nuclear safety. The Eulerian-Eulerian and the Eulerian-Lagrangian methods are commonly used to investigate bubble columns. Eulerian approaches require additional tasks such as strict volume conservation at the interface and a predefined well-structured grid. In contrast, the Lagrangian approach can be easily implemented. Hence, we introduce a fully Lagrangian approach for the simulation of bubble columns using the discrete bubble model (DBM) and moving particle semi-implicit (MPS) methods. Additionally, we propose a rigorous method to estimate the volume fraction accurately, and verified it through experimental data and analytical results. The MPS method was compared with the experimental data of Dambreak. The DBM was verified by analyzing the terminal velocity of a single bubble for each bubble size. It agreed with the analytical results for each of the four drag correlations. Additionally, the improved method for calculating the volume fraction showed agreement with the Ergun equation for the pressure drop in a packed bed. The implemented MPS-DBM was used to simulate the bubble column, and the results were compared with the experimental results. We demonstrated that the MPS-DBM was in quantitative agreement with the experimental data.

NUMERICAL STUDY ON TWO-DIMENSIONAL MULTIPHASE FLOWS DUE TO DENSITY DIFFERENCE WITH INTERFACE CAPTURING METHOD (경계면 포착법을 사용한 밀도차에 따른 다상유동에 관한 수치해석적 연구)

  • Myong, H.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.214-219
    • /
    • 2007
  • Both the bubble rising in a fully filled container and the droplet splash are simulated by a solution code(PowerCFD). This code employs an unstructured cell-centered method based on a conservative pressure-based finite-volume method with interface capturing method (CICSAM) in a volume of fluid(VOF) scheme for phase interface capturing. The present results are compared with other numerical solutions found in the literature. It is found that the present code simulate complex free surface flows such as multi phase flows due to large density difference efficiently and accurately.

  • PDF

The Behavior of Intrinsic Bubbles in Silicon Wafer Direct Bonding (실리콘 웨이퍼 직접접합에서 내인성 Bubble의 거동에 관한 연구)

  • Moon, Do-Min;Jeong, Hae-Do
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.3 s.96
    • /
    • pp.78-83
    • /
    • 1999
  • The bonding interface is dependent on the properties of surfaces prior to SDB(silicon wafer direct bonding). In this paper, we prepared silicon surfaces in several chemical solutions, and annealed bonding wafers which were combined with thermally oxidized wafers and bare silicon wafers in the temperature range of $600{\times}1000^{\circ}C$. After bonding, the bonding interface is investigated by an infrared(IR) topography system which uses the penetrability of infrared through silicon wafer. Using this procedure, we observed intrinsic bubbles at elevated temperatures. So, we verified that these bubbles are related to cleaning and drying conditions, and the interface oxides on silicon wafer reduce the formation of intrinsic bubbles.

  • PDF

HIGH-ORDER POTENTIAL FLOW MODELS FOR HYDRODYNAMIC UNSTABLE INTERFACE

  • Sohn, Sung-Ik
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.16 no.4
    • /
    • pp.225-234
    • /
    • 2012
  • We present two high-order potential flow models for the evolution of the interface in the Rayleigh-Taylor instability in two dimensions. One is the source-flow model and the other is the Layzer-type model which is based on an analytic potential. The late-time asymptotic solution of the source-flow model for arbitrary density jump is obtained. The asymptotic bubble curvature is found to be independent to the density jump of the fluids. We also give the time-evolution solutions of the two models by integrating equations numerically. We show that the two high-order models give more accurate solutions for the bubble evolution than their low-order models, but the solution of the source-flow model agrees much better with the numerical solution than the Layzer model.

Preliminary numerical study of single bubble dynamics in swirl flow using volume of fluid method

  • Li, Zhongchun;Qiu, Zhifang;Du, Sijia;Ding, Shuhua;Bao, Hui;Song, Xiaoming;Deng, Jian
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1119-1126
    • /
    • 2021
  • Spacer grid with mixing vane had been widely used in nuclear reactor core. One of the main feather of spacer grid with mixing vane was that strong swirl flow was formed after the spacer grid. The swirl flow not only changed the bubble generation in the near wall field, but also affected the bubble behaviors in the center region of the subchannel. The interaction between bubble and the swirl flow was one of the basic phenomena for the two phase flow modeling in fuel assembly. To obatin better understanding on the bubble behaviors in swirl flow, full three dimension numerical simulations were conducted in the present paper. The swirl flow was assumed in the cylindral calculation domain. The bubble interface was captured by Volume Of Fluid (VOF) method. The properties of saturated water and steam at different pressure were applied in the simulation. The bubble trajectory, motion, shape and force were obtained based on the bubble parameters captured by VOF. The simulation cases in the present study included single bubble with different size, at different angular velocity conditions and at different pressure conditions. The results indicated that bubble migrated to the center in swirl flow with spiral motion type. The lateral migration was mainly related to shear stress magnitude and bubble size. The bubble moved toward the center with high velocity when the swirl magnitude was high. The largest bubble had the highest lateral migration velocity in the present study range. The effect of pressure was small when bubble size was the same. The prelimenery simulation result would be beneficial for better understanding complex two phase flow phenomena in fuel assembly with spacer grid.

Analytic and Numerical Study for air Bubble Defect of UV-NIL Process (UV-NIL 공정의 기포 결함에 대한 해석적 및 수치적 연구)

  • Seok, Jeong-Min;Kim, Nam-Woong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.473-478
    • /
    • 2012
  • In this paper, the air bubble formation mechanism in the rectangular and triangular line-and-space pattern during dispensing UV Nanoimprint Lithography (UV-NIL) at an atmospheric condition is studied. To investigate the air bubble formation, an analytic model based on geometric approach and a numerical model based on CFD(computational fluid dynamics) were used in the analysis. It was found in the numerical analysis that every time the flow front passed through a corner of the pattern, it proceeded with a newly formed shape, occurring due to interface reconfiguration, since the flow fronts were formed such that they minimized the surface energy. Moreover, the conditions for the air bubble formation were investigated by applying the analytic analysis based on geometric approach and the numerical analysis. Good overall agreement was found between the analytic and numerical analysis.

Time-Resolved Two-Phase PIV Measurements of Freely Rising Bubble Flows with an Image Separation Method (단일 카메라의 영상분리를 이용한 자유 상승 기포의 고속 이상 유동 PIV 계측)

  • Sung Jaeyong;Park Sang Min;Yoo Jung Yul
    • Journal of the Korean Society of Visualization
    • /
    • v.2 no.1
    • /
    • pp.39-45
    • /
    • 2004
  • A time-resolved two-phase PIV system using a single camera has been developed, which introduces a method of image separation into respective phase images, and is applied to freely rising single bubble. Gas bubble, tracer particle and background have different gray intensity ranges on the same image frame when reflection and dispersion in the phase interface are intrinsically eliminated by optical filters and fluorescent particles. Further, the signals of the two phases do not interfere with each other. Gas phase velocities are obtained from the separated bubble image by applying the two-frame PTV. On the other hand, liquid phase velocities are obtained from the tracer particle image by applying the cross-correlation algorithm. As a result, the bubble rises rectilinearly just after it is released from an injector and then has a zigzag motion in the far field. From the trajectory of the bubble, it is found that the period of the zigzag motion is closely related to the vortex shedding although the wavelength of it varies along its movement.

  • PDF