• Title/Summary/Keyword: Bubble Column

Search Result 134, Processing Time 0.031 seconds

Measurement of Bubble Size in Flotation Column using Image Analysis System (이미지 분석시스템을 이용한 부선컬럼에서 기포크기의 측정)

  • An, Ki-Seon;Jeon, Ho-Seok;Park, Chul-Hyun
    • Resources Recycling
    • /
    • v.29 no.6
    • /
    • pp.104-113
    • /
    • 2020
  • Bubble size in froth flotation has long been recognized as a key factor which affects the bubble residence time, the bubble surface area flux (Sb) and the carrying rate (Cr). This paper presents method of bubble size measurement, relationship between operating variables and gas dispersion properties in flotation column. Using high speed camera and image analysis system, bubble size has been directly measured as a function of operating parameters (e.g., superficial gas rate (Jg), superficial wash water rate (Jw), frother concentration) in flotation column. Relationship compared to measured and estimated bubble size was obtained within error ranges of ±15~20% and mean bubble size was 0.718mm. From this system the empirical relationship to control the bubble size and distribution has been developed under operating conditions such as Jg of 0.65~1.3cm/s, Jw of 0.13~0.52cm/s and frother concentration of 60~200ppm. Surface tension and bubble size decreased as frother concentration increased. It seemed that critical coalescence concentration (CCC) of bubbles was 200ppm so that surface tension was the lowest (49.24mN/m) at frother concentration of 200ppm. Bubble size tend to increase when superficial gas rate (Jg) decreases and superficial wash water rate Jw and frother concentration increase. Gas holdup is proportional to superficial gas rate as well as frother concentration and superficial wash water rate (at the fixed superficial gas rate).

Holdup Characteristics of Three Functional Regions in a Slurry Bubble Column (삼상 슬러리 기포탑의 세 기능영역 체류량 특성)

  • Jang, Ji Hwa;Lim, Dae Ho;Kang, Yong;Jun, Ki Won
    • Korean Chemical Engineering Research
    • /
    • v.48 no.3
    • /
    • pp.359-364
    • /
    • 2010
  • Three kinds of functional regions such as continuous slurry(${\varepsilon}_f$), bubble(${\varepsilon}_b$) and wake(${\varepsilon}_w$) regions were identified, and the individual phase holdups of each functional region were determined in a three-phase slurry bubble column of 0.152 m ID. The holdups of bubble and wake were measured by adopting the electrical resistivity probe method. Effects of gas velocity and solid concentration in the slurry phase on the individual holdups of functional regions in the column were discussed. The holdup of continuous slurry phase decreased but that of bubble or wake increased, with an increase in the gas velocity in the column. The increase of solid content in the slurry phase could lead to the increase in the holdup of continuous slurry phase but decrease in the bubble or wake holdup. The portion of wake holdup was in the range of 15~40% of the bubble holdup, which decreased with increasing gas velocity or solid content in the slurry phase. The individual holdups of three functional regions were well correlated with operating variables within this experimental conditions.

Study on Effect of gas superficial velocity on particle behavior in three phased Slurry Bubble Column Reactor (3상 Slurry Bubble Column Reactor에서 기체유속에 따른 고체입자의 거동에 대한 연구)

  • Yang, Jung-Hoon;Yang, Jung-Il;Lee, Ho-Tae;Kim, Hak-Joo;Chun, Dong-Hyun;Jung, Heon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.876-879
    • /
    • 2009
  • Fischer-Tropsch 합성 반응과 같은 slurry bubble column reactor에서는 반응 속도를 증진시키기 위해서는 서로 다른 상간의 접촉 면적을 최대화함으로써 물질 전달을 원활하게 유지하여야 한다. 특히 Fischer-Tropsch 합성 반응에서는 반응물인 기체가 촉매로서 기능하는 고체 표면으로의 external mass transfer가 효과적으로 이루어져야 하기 때문에 반응기 내의 기체의 거동뿐만 아니라 고체인 촉매의 분포에 대한 연구가 활발하게 이루어지고 있다. 따라서 본 연구에서는 반응기 내에 기체의 superficial velocity를 변화시키면서 기체의 hold up 뿐만 아니라 고체 입자의 분포특성에 대하여 관찰하였다. Superficial velocity가 증가함에따라 gas hold up의 경우, 일정하게 증가하다가 6 cm/sec 이상에서 그 증가폭이 감소하였다. 즉 6 cm/sec이상에서 turbulent flow regime을 형성하였다. 또한 고체입자의 분포 역시 기체의 superficial velocity가 증가함에따라 보다 균일하게 되는 것을 확인할 수 있었다.

  • PDF

Biodegradation of Toluene using Biofilms in a Bubble Column Bioreactor

  • Choi, Yong-Bok;Lee, Jang-Young;Kim, Hak-Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.1
    • /
    • pp.41-47
    • /
    • 1995
  • Biodegradation of toluene in liquid effluent stream was carried out using biofilms of Pseudomonas putida formed on celite particles in the bubble column bioreactor. Silicon rubber tubing was installed at the bottom of the bioreactor and liquid toluene was circulated within the tubing. Toluene diffused out of the tube wall and was transferred into the culture broth where degradation by biofilms occurred. The operating variables affecting the formation of biofihns on celite particles were investigated in the bubble column bioreactor, and it was found that formation of bifilm is favored by high dilution rate and supply rate of carbon source which stimulate the growth of initially attached cells. Continuous biodegradation of toluene using biofilms was stablely conducted in the bioreactor for more than one month without any significant fluctuation, showing a removal efficiency higher than 95% at the toluene transfer rate of 1.2 g/L/h.

  • PDF

Effects and Optimization of Gamma-Amino Butyric Acid (GABA) Production Process using Glutamate Decarboxylase (GAD) (Glutamate Decarboxylase (GAD)를 이용한 Gamma-Amino Butyric Acid (GABA) 생산 및 최적화)

  • Kim, Eui Jin;Lee, Jung-Heon
    • KSBB Journal
    • /
    • v.29 no.6
    • /
    • pp.426-431
    • /
    • 2014
  • pH controlled batch reactor and bubble column reactors have been developed in this research. They were used to produce high concentration of GABA and to determine optimal pH for GABA production. Glutamate decarboxylase (GAD) was isolated from recombinant E. coli and used for GABA production from monosodium glutamate (MSG). pH control was inevitable because the pH increased with MSG consumption. GAD showed highest activity at acidic conditions at pH 5.5 but the optimal pH for GABA production was pH 6.0. When 1.5 mole of MSG was used as reactant, the 1.05 mole of GABA was produced after 10 hrs batch reaction. Using bubble column reactors, 80 % of MSG was converted to GABA for 6 hrs reaction and 1.2 mole of GABA was produced.

Production of Itaconic Acid at Various Bioreactors (다양한 생물반응기에서 이타콘산의 생산)

  • 박승원;김승옥;이진석
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.3
    • /
    • pp.304-308
    • /
    • 1994
  • A suitable culture method and bioreactor type for itaconic acid production were chosen by comparing the maximal concentration of itaconic acid produced in various systems. In batch culture, the maximal concentration of itaconic acid produced in a bubble column reactor was about 5% greater than that produced in stirred-tank or external-loop airlift reactor. These results were thought to be due to lower shear force and higher mass transfer efficiency in a bubble column reactor in comparison with other reactors. Moreover, the fed-batch mode in a bubble column was found to be a suitable one, producing about 25% higher concentration of itaconic acid compared to batch mode.

  • PDF

Inhanced Oxygen Supply of Xanthan Fermentations Using either Hydrogen Peroxide or Fluidized Particles in Tower Bioreators (탑형 생물반응기에서 과산화수소 또는 유동화 입자를 이용만 Xanthan 발효의 산소공급 향상)

  • 서일순
    • KSBB Journal
    • /
    • v.17 no.2
    • /
    • pp.142-147
    • /
    • 2002
  • The decomposition of hydrogen peroxide was used for supplementing the oxygen during batch xanthan fermentations in a bubble column bioreactor in order to escape the oxygen transfer limitation that occurred at the high viscosity of culture broths. The xanthan production, however, was inhibited reversibly by dosing hydrogen peroxide. On the other hand, fluidized particles of glass beads with 8 mm diameter led to high gas-liquid oxygen transfer rates in three-phase fluidized beds, which resulted in higher space-time yields of the xanthan production compared to in the bubble column bioreactors.

Effects of Column Diameter on the Holdups of Bubble, Wake and Continuous Liquid Phase in Bubble Columns with Viscous Liquid Medium (점성액체 기포탑에서 탑의 직경이 기포, wake 및 연속액상 체류량에 미치는 영향)

  • Lim, Dae Ho;Jang, Ji Hwa;Kang, Yong;Jun, Ki Won
    • Korean Chemical Engineering Research
    • /
    • v.49 no.5
    • /
    • pp.582-587
    • /
    • 2011
  • Holdup characteristics of bubble, wake and continuous liquid phases were investigated in bubble columns with viscous liquid media. Effects of column diameter(0.051, 0.076, 0.102 and 0.152 m ID), gas velocity($U_G$=0.02~0.16 m/s) and liquid viscosity(${\mu}_L$=0.001~0.050 $Pa{\cdot}s$) of continuous liquid media on the holdups of bubble, wake and continuous liquid phases were discussed. The three phase such as bubble, wake and continuous liquid phases were classified successfully by adapting the dual electrical resistivity probe method. Compressed filtered air and water or aqueous solutions of CMC(Carboxy Methyl Cellulose) were used as a gas and a liquid phase, respectively. To detect the wake as well as bubble phases in the bubble column continuously, a data acquisition system(DT 2805 Lab Card) with personal computer was used. The analog signals obtained from the probe circuit were processed to produce the digital data, from which the wake phase was detected behind the multi-bubbles as well as single bubbles rising in the bubble columns. The holdup of bubble and wake phases decreased but that of continuous liquid media increased, with an increase in the column diameter or liquid viscosity. However, the holdup of bubble and wake phases increased but that of continuous media decreased with an increase in the gas velocity. The holdup ratio of wake to wake to bubble phase decreased with an increase in the column diameter or gas velocity, however, increased with an increase in the viscosity of con-tinuous liquid media. The holdups of bubble, wake and continuous liquid media could be correlated in terms of operating variables within this experimental conditions as: ${\varepsilon}_B=0.043D^{-0.18}U_G^{0.56}{\mu}_L^{-0.13}$, ${\varepsilon}_W=0.003D^{-0.85}U_G^{0.46}{\mu}_L^{-0.10}$, ${\varepsilon}_C=1.179D^{0.09}U_G^{-0.13}{\mu}_L^{0.04}$.

Characteristics of Bubble Flow Behavior in a Gas-liquid Countercurrent Bubble Column Bioreactor (기-액 향류 흐름 기포탑 생물 반응기에서 기포 흐름 거동 특성)

  • Son, Sung-Mo;Kang, Suk-Hwan;Lee, Chan-Gi;Jung, Sung-Hyun;Kang, Yong;Kim, Sang-Done
    • Korean Chemical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.272-277
    • /
    • 2005
  • Characteristics of bubbling behavior and bubble properties were investigated in a gas-liquid countercurrent bubble column of in diameter 0.152 m and 3.5 m in height, respectively. Effects of gas and liquid velocities and bubble distribution mode(even, wall-side, central or asymmetric distribution) on the bubble properties such as chord length, frequency, rising velocity and holdup in the reactor were measured and examined by means of dual resistivity probe method. The bubble size, frequency and holdup increased with increasing gas($U_G$) or liquid velocity($U_L$). The rising velocity of bubbles increased with increasing $U_G$, whereas decreased with increasing $U_L$. The uniformity of bubble size distribution and bubble holdup decreased when the distribution mode of bubbles at the gas distributor was changed from even to wall-side, central or asymmetric. The central distribution of bubbles was better than asymmetric mode but worse than wall-side distribution, in considering the bubble holdup and uniformity of distribution.

Relationship between void fraction and mixing in bubble column flow (기포탑 유동에서의 기포분율과 혼합정도의 상관관계)

  • Zahidul, Islam MD;Lee, Jubeom;Park, Hyungmin
    • Journal of the Korean Society of Visualization
    • /
    • v.15 no.1
    • /
    • pp.41-46
    • /
    • 2017
  • Control of mixing and transport processes are the key areas that can be benefited by understanding the hydrodynamics in gas-liquid two-phase flows. In particular, the enhanced bubble-induced liquid-phase mixing is known to be a function of void fraction distribution, gas phase velocity and so on. To further our insight on the characteristics of the liquid-phase mixing induced by the bubbles, in the present study, we experimentally investigate the mixing performance of a rectangular bubble column while changing the void fraction from 0.006 to 0.075%. A shadowgraphy technique is used to measure the gas-phase properties such as void fraction and size/velocity of bubbles. On the other hand, we use dye visualization with low diffusive buoyant dye to directly measure the level of mixing. Finally, we confirm that the time taken for full mixing scales with the inverse of volume void fraction.