• Title/Summary/Keyword: Bt-9 rice

Search Result 7, Processing Time 0.024 seconds

Molecular biological analysis of Bt-transgenic (Bt-9) rice and its effect on Daphnia magna feeding

  • Oh, Sung-Dug;Yun, Doh-Won;Chang, Ancheol;Lee, Yu-jin;Lim, Myung-Ho
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.1
    • /
    • pp.113-124
    • /
    • 2019
  • Insect-resistant transgenic (Bt-9) rice was generated by inserting mCry1Ac1, a modified gene from the soil bacterium Bacillus thuringiensis, into the genome of a conventional variety of rice (Ilmi). With regard to potential problems such as safety, an evaluation of non-target organisms is necessary as an essential element of an environmental risk assessment of genetically modified (GM) crops. We studied the effects of the Bt-9 rice on the survival of cantor Daphnia magna, a commonly used model organism in ecotoxicological studies. D. magna fed on the Bt-transgenic rice (Bt-9) and its near non-GM counterparts (Ilmi) grown in the same environment (a 100% ground rice suspension). The Bt-9 rice was confirmed to have the inserted T-DNA and protein expression evident by the PCR and ELISA analyses. The feeding study showed a similar cumulative immobility and abnormal response of the Daphnia magna between the Bt-9 rice and Ilmi. Additionally, the 48 h-EC50 values of the Bt-9 and Ilmi rice were 4,400 mg/L (95% confidence limits: 3861.01 - 5015.01 mg/L) and 5,564 mg/L (95% confidence limits: 4780.03 - 6476.93 mg/L), respectively. The rice NOEC (No observed effect concentration) value for D. magna was suggested to be 1,620 mg/L. We conclude that the tested Bt-9 and Ilmi have a similar cumulative immobility for D. magna, a widely used model organism, and the growth of Bt-9 did not affect non-target insects.

Risk assessment of genetically engineered rice Bt-9 resistant to Cnaphalocrocis medinalis: influence on above-ground arthropods in Korea

  • Oh, Sung-Dug;Bae, Eun Ji;Park, Soo-Yun;Lee, Bumkyu;Yun, Do Won;Suh, Sang Jae
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.4
    • /
    • pp.827-841
    • /
    • 2019
  • The effect of genetically engineered rice Bt-9 on the diversity and abundance of plant-dwelling insects and spiders was tested under field conditions. Genetically engineered rice Bt-9, expressing mCry1Ac1 from Bacillus thuringiensis, confers resistance to rice leaf roller (Cnaphalocrocis medinalis) and provides tolerance to the herbicide glufosinate (PPT). The study compared Bt-9 and two non-GM reference varieties, Ilmi-byeo and Dongjin-byeo, at LMO isolated fields in Gunwi (Kyungpook National University) and Jeonju (National Institute Agricultural Sciences) in Southern Korea in 2016 - 2017. A total of 40,817 individuals from 62 families and 11 orders were collected from the two living modified organism (LMO) isolated fields. From the three types of rice fields, a total of 13,982, 14,105, and 12,730 individuals from the Bt-9, Ilmi-byeo and Dongjin-byeo were collected, respectively. Throughout the study, the analysis of variance indicated no significant differences (p < 0.05). Multivariate analysis showed that the abundance and diversity of plant dwelling insects were similar. The data on insect species population densities were subjected to principal component analysis (PCA), which did not distinguish among the three varieties, Bt-9 and the non-GM, reference cultivars, during the cultivation years. However, the results of the PCA analysis were completely divided into four groups based on the yearly survey areas. Therefore, there was no evidence for a negative impact of Bt-9 on the above-ground insects and spiders.

Effects of insect-resistant genetically modified rice (Bt-9) cultivation on non-target insect diversity

  • Oh, Sung-Dug;Lim, Myung-Ho;Lee, Bumkyu;Yun, Doh-Won;Sohn, Soo-In;Chang, Ancheol;Park, Soon Ki;Suh, Sang Jae
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.1
    • /
    • pp.28-37
    • /
    • 2018
  • This study was done to develop environmental risk assessments and a biosafety guide for insect-resistant genetically modified rice at a LMO (Living Modified Organism) isolation field. In the LMO quarantine area of Kyungpook National University, the species diversities and population densities of non-target insects found on insect-resistant genetically modified rice (Bt-9) resistant to Cnaphalocrocis medinalis and on non-GM rices (Dongjin and Ilmi) were investigated. The Bt-9 event was therefore evaluated under field conditions to detect possible impacts on the above ground insects and spiders. The study compared transgenic rice and two non-GM reference rices, Ilmi and Dongjin, at Gunwi in Southern Korea in 2016. Each rice was grown on three $18m^2$ plots with a randomized block design. A total of 4,243 individuals from 43 families and 9 orders were collected from the LMO isolation field. In the three types of rice fields, a total of 1,467 individuals from the insect-resistant genetically modified rice (Bt-9), 1,423 individuals from the Ilmi, and 1,353 individuals from the Dongjin were collected, respectively. There was no difference between the population densities of the non-target insect pests, natural enemies and other insects on the insect-resistant genetically modified rice (Bt-9) and non-GM rices. These results provide the diversity and population density of non-target insects for an environment risk assessment survey on insect-resistant genetically modified rice and could be used as a guideline to make a biosafety assessment method for genetically modified crops.

Effect of insect-resistant genetically engineered (Bt-T) rice and conventional cultivars on the brown planthopper (Nilaparvata lugens Stål)

  • Sung-Dug, Oh;Eun Ji, Bae;Kijong, Lee;Soo-Yun, Park;Myung-Ho, Lim;Doh-Won, Yun;Seong-Kon, Lee;Gang-Seob, Lee;Soon Ki, Park;Jae Kwang, Kim;Sang Jae, Suh
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.3
    • /
    • pp.511-520
    • /
    • 2022
  • Insect-resistant transgenic rice (Bt-T) expresses a toxic protein (mcry1Ac1) derived from the soil bacterium Bacillus thuringiensis found in the rice cultivar Dongjin with an insecticidal property against rice leaf roller (Cnaphalocrocis medinalis). In this study, to investigate the impact of Bt-T on non-target organisms, the feed and oviposition preferences and biological parameters of brown planthopper (Nilaparvata lugens Stål) were comparatively analyzed in four rice cultivars: Dongjin (parent variety), Ilmi (reference cultivar), Chinnong (brown planthopper resistant cultivar) and Bt-T. In the Bt-T and Dongjin cultivars, the feed preferences were 32.4 ± 8.3 and 34.1 ± 6.8%, and the oviposition preferences were 32.5 ± 5.1 and 30.0 ± 5.3% respectively, and there was no statistical significance between these rices. Additionally, in the Bt-T and Dongjin cultivars, the total lifespans from egg to adult were 39.5 ± 6.9 and 40.0 ± 5.8 days, and the weights of adult females were 1.78 ± 0.14 and 1.72 ± 0.16 mg, respectively. Therefore, there was no statistical difference in the biological parameters between these two varieties. Overall, the results indicate that the insect-resistant transgenic rice (Bt-T) did not negatively affect the reproduction and life cycle of brown planthopper, a non-target organism.

Influences of Insect-Resistant Genetically Modified Rice (Bt-T) on the Diversity of Non-Target Insects in an LMO Quarantine Field (LMO 격리 포장에서 해충저항성벼(Bt-T)가 비표적 곤충다양성에 미치는 영향)

  • Oh, Sung-Dug;Park, Soo-Yun;Chang, Ancheol;Lim, Myung-ho;Park, Soon Ki;Suh, Sang Jae
    • Korean Journal of Breeding Science
    • /
    • v.50 no.4
    • /
    • pp.406-414
    • /
    • 2018
  • This study was conducted to develop environmental risk assessments and biosafety guides for insect-resistant genetically modified rice in an LMO (Living Modified Organism) isolation field. In the LMO quarantine area of Kyungpook National University, the species diversities and population densities of non-target insects found on insect-resistant genetically modified rice (Bt-T), rice resistant to Cnaphalocrocis medinalis, and non-GM rice (Dongjin-byeo and Ilmi-byeo) were investigated. The Bt-T plants were, therefore, evaluated under field conditions to detect possible impacts on above ground insects and spiders. In 2016 and 2017, the study compared transgenic rice and two non-GM reference rice, namely Dongjin-byeo and Ilmi-byeo, at Gunwi. A total of 9,552 individuals from 51 families and 11 orders were collected from the LMO isolation field. From the three types of rice fields, a total of 3,042; 3,212; and 3,297 individuals from the Bt-T, Dongjin-byeo, and Ilmi-byeo were collected, respectively. There was no difference between the population densities of the non-target insect pests, natural enemies, and other insects on the Bt-T compared to non-GM rice. The data on insect species population densities were subjected to principal component analysis (PCA) without distinguishing between the three varieties, namely GM, non-GM, and reference cultivar, in all cultivation years. However, the PCA clearly separated the samples based on the cultivation years. These results suggest that insect species diversities and population densities during plant cultivation are determined by environmental factors (growing condition and seasons) rather than by genetic factors.

Comparative Performance of Broilers Fed Diets Containing Processed Meals of BT, Parental Non-BT Line or Commercial Cotton Seeds

  • Elangovan, A.V.;Mandal, A.B.;Johri, T.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.1
    • /
    • pp.57-62
    • /
    • 2003
  • An effort was made to assess comparative production performance in broiler chickens fed diets containing solvent extracted cottonseed meal (CSM) processed from BT and Parental Non-BT lines. Processed meal of national check and commercial produce cottonseeds were also used for comparison. The free gossypol contents were 0.02, 0.02, 0.44 and 0.03% in meals of BT, Parental Non-BT, national check and commercial produce cottonseeds, respectively. Day-old broiler chicks (n=243) were divided to 27 groups of 9 each. Nine dietary treatments (iso-nitrogenous, 23% CP and iso-caloric, 2,800 kcal ME/kg) were formulated viz., D1 (control, soybean meal-SBM based), D2 and D3 (BT CSM at 10% of diet with and without additional iron), D4 and D5 (non-BT CSM with and without additional iron), D6 and D7 (national check CSM with or without additional iron), and D8 and D9 (commercial produce CSM with or without additional iron at 2 ppm for every 1 ppm of free gossypol, respectively). Each dietary treatment was offered to three replicated groups up to 6 weeks of age. At the end of 6 weeks of age, 10 birds were taken out randomly from each treatment and were sacrificed to study carcass traits, organs' yield and histo-pathological changes in vital organs. The broiler chickens received CSM processed from BT (D2, 1,753 g and D3, 1,638 g) and Parental Non-BT (D4, 1,653 g and D5, 1,687 g) with or without additional Fe grew at same rate as observed in soybean meal (solvent ext.) based diet (D1, 1,676 g). The feed intake and feed conversion efficiency (feed: gain) in these dietary treatments (BT, non-BT line based diets) also did not differ significantly (p>0.05) from control diet. Similar observation was also observed in dietary treatments (D8 and D9) containing solvent extracted cottonseed meal of commercial produce origin. However, a decrease (p<0.05) in body weight gain and feed intake was observed in D6 containing national check CSM with high gossypol content. Addition of Fe in the diet (D7) improved (p<0.05) feed intake and weight gain but not to the extent as observed in diets containing BT, parental non-BT, and commercial produce CSM or control. However, any type of CSM did not affect feed conversion efficiency when fed with or without additional iron. The carcass characteristics in terms of dressing percentage, liver weight and heart weight was not significantly (p>0.05) different between the treatments. The eviscerated yields emanated from diets containing either BT, non-BT or commercial produce were statistically similar to control. However, eviscerated yield of broilers fed national check CSM with or without iron supplementation was lower (p<0.05) than BT cotton with Fe supplementation and commercial produce CSM. The study envisaged that BT, parental non-BT and commercial produce solvent extracted cottonseed meal can be included at 10% in soybean meal based broiler diet replacing soybean meal and rice bran without additional iron.

A Study on Soil Characteristics of Paddy Fields with Re-established Soils

  • Sonn, Yeon-Kyu;Moon, Yong-Hee;Zhang, Yong-Seon;Jung, Kang-Ho;Cho, Hye-Rae;Hyun, Byung-Keun;Shin, Kook-Sik;Han, Kyeong-Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.3
    • /
    • pp.194-204
    • /
    • 2015
  • Six study sites in Gumi, Goryeong in Gyeongbuk province and Naju in Jeonnam province were selected to investigate soil properties of poorly drained horizons in paddy soils. The horizons were re-established layers which were parent material layers originated from fluvial deposits. Topsoil layers were differentiated from piled parent materials while soil structure of the topsoil layer was massive with striated microstructure. Compaction at soil re-establishment and a lack of structure and aggregate development in these soils may cause the limitation of vertical water movement and result in poorly drained horizons. Soil samples were taken from paddy fields with top soils of sandy loam, silt loam and silty clay loam and re-established soils of coarse and fine texture. The samples were taken from each horizon for the analyses of soil chemical and mineral properties. Soils with re-established soils of coarse texture had greater amounts of sands from top soil texture distributions, while soils with fine texture had greater amounts of silts. Chemical properties of top soils were analyzed from rice cultivated soils at the time of re-establishments and one year after the re-establishments. The coarse texture of the re-established horizons decreased in EC values from 0.23 to $0.11(dS\;m^{-1})$, available phosphate values from 112 to $54(mg\;kg^{-1})$, and exchangeable Ca values from 6.6 to $4.9(cmol_c\;kg^{-1})$. On the other hand, soils with fine texture showed decrease only in pH and exchangeable Ca values. Especially, organic matter and available phosphate contents showed heterogeneous distributions from each horizon. This result may be caused by mixture of plough layer and subsurface layer during and consolidation. Hydraulic conductivity values were low at the boundaries of top soil and parent material layers except SL/coarse soil. Soil microstructure was massive structure without soil clods or pores and showed striated structure. Therefore, re-established paddy fields with fluvial deposits as parent material layers showed limited vertical movements of soil water because of occurrence of compacted layers and less-development of soil clods and aggregates.