• Title/Summary/Keyword: Brunauer-Emmett-Teller surface area

Search Result 112, Processing Time 0.026 seconds

Adsorption capability of activated carbon synthesized from coconut shell

  • Islam, Md Shariful;Ang, Bee Chin;Gharehkhani, Samira;Afifi, Amalina Binti Muhammad
    • Carbon letters
    • /
    • v.20
    • /
    • pp.1-9
    • /
    • 2016
  • Activated carbon was synthesized from coconut shells. The Brunauer, Emmett and Teller surface area of the synthesized activated carbon was found to be 1640 m2/g with a pore volume of 1.032 cm3/g. The average pore diameter of the activated carbon was found to be 2.52 nm. By applying the size-strain plot method to the X-ray diffraction data, the crystallite size and the crystal strain was determined to be 42.46 nm and 0.000489897, respectively, which indicate a perfect crystallite structure. The field emission scanning electron microscopy image showed the presence of well-developed pores on the surface of the activated carbon. The presence of important functional groups was shown by the Fourier transform infrared spectroscopy spectrum. The adsorption of methyl orange onto the activated carbon reached 100% after 12 min. Kinetic analysis indicated that the adsorption of methyl orange solution by the activated carbon followed a pseudo-second-order kinetic mechanism (R2 > 0.995). Therefore, the results show that the produced activated carbon can be used as a proper adsorbent for dye containing effluents.

Properties and Photocatalytic Activity of Pitch-binded ACF/TiO2Composites

  • Oh, Won-Chun;Jung, Ah-Reum
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.3
    • /
    • pp.150-156
    • /
    • 2008
  • Pitch-binded activated carbon fiber(ACF)/$TiO_2$ composite photocatalysts were prepared by Carbon Tetra Chloride (CTC) solvent mixing method with different mixing ratios of anatase to ACF. The result of the textural surface properties demonstrated that there is a slight increase in the Brunauer, Emmett and Teller (BET) surface area of composites with an increase of the amount of ACF. The surfaces structure morphologies of the composites were observed using an Scanning Electron Microscope (SEM). In the XRD patterns for all ACF/$TiO_2$ composites, the diffraction peaks showed the formation of anatase crystallites. The EDX spectra showed the presence of C, O and Si with strong Ti peaks. Most of these samples were richer in carbon and major Ti metal than any other elements. From the photo-decomposition results, the excellent activity of the ACF/$TiO_2$ composites between c/$c_0$ for methylene blue and UV irradiation time could be attributed to both the effects of the photocatalysis of the supported $TiO_2$ and adsorptivity of activated carbon fiber and another carbon derived from pitch.

Adsorptive Removal of Phosphate Ions from Aqueous Solutions using Zirconium Fumarate

  • Rallapalli, Phani B.S.;Ha, Jeong Hyub
    • Applied Chemistry for Engineering
    • /
    • v.31 no.5
    • /
    • pp.495-501
    • /
    • 2020
  • In this study, zirconium fumarate of metal-organic framework (MOF-801) was solvothermally synthesized at 130 ℃ and characterized through powder X-ray diffraction (PXRD) analyses and porosity measurements from N2 sorption isotherms at 77 K. The ability of MOF-801 to act as an adsorbent for the phosphate removal from aqueous solutions at 25 ℃ was investigated. The phosphate removal efficiency (PRE) obtained by 0.05 g/L adsorbent dose at an initial phosphate concentration of 60 ppm after 3 h was 72.47%, whereas at 5 and 20 ppm, the PRE was determined to be 100% and 89.88%, respectively, after 30 min for the same adsorbent dose. Brunauer-Emmett-Teller (BET) surface area and pore volume of the bare MOF-801 sample were 478.25 ㎡/g and 0.52 ㎤/g, respectively, whereas after phosphate adsorption (at an initial concentration of 60 ppm, 3 h), the BET surface area and pore volume were reduced to 331.66 ㎡/g and 0.39 ㎤/g, respectively. The experimental data of kinetic (measured at initial concentrations of 5, 20 and 60 ppm) and isotherm measurements followed the pseudo-second-order kinetic equation and the Freundlich isotherm model, respectively. This study demonstrates that MOF-801 is a promising material for the removal of phosphate from aqueous solutions.

Removal of ciprofloxacin from aqueous solution by activated carbon prepared from orange peel using zinc chloride

  • Koklu, Rabia;Imamoglu, Mustafa
    • Membrane and Water Treatment
    • /
    • v.13 no.3
    • /
    • pp.129-137
    • /
    • 2022
  • In this study, the removal of Ciprofloxacin (CPX) from aqueous solutions was investigated by a new activated carbon adsorbent prepared from orange peel (ACOP) with chemical activation using ZnCl2. The physicochemical properties of orange peel activated carbon were characterized by proximate and ultimate analysis, scanning electron microscopy, BET surface area determination and Fourier transformation infrared spectroscopic studies. According to Brunauer-Emmett-Teller isotherm and non-local-density functional theory, the cumulative surface area, pore volume and pore size of ACOP were determined as 1193 m2 g-1, 0.83 cc g-1 and 12.7 Å, respectively. The effects of contact time, pH, temperature and ACOP dose on the batch adsorption of CPX were studied. Adsorption equilibrium data of CPX with ACOP were found to be compatible with both the Langmuir and Freundlich isotherms. CPX adsorption capacity of ACOP was calculated as 181.8 mg g-1 using Langmuir isotherm. The CPX adsorption kinetics were found to be harmonious with the pseudo-second-order kinetic model. Conclusively, ACOP can be assessable as an effective adsorbent for the removal of ciprofloxacin (CPX) from aqueous solutions.

Preparation and Characterization of Pt-Fe/Carbon Black Nanocatalyst for Anion Exchange Membrane in Alkaline Electrolysis (음이온 교환막 수전해용 Pt-Fe/카본블랙 나노 촉매 제조 및 특성)

  • SUNGKOOK CHO;JAEYOUNG LEE;HONGKI LEE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.6
    • /
    • pp.715-722
    • /
    • 2022
  • Pt-Fe/carbon black nanocatalysts were prepared by spontaneous reduction reaction of Platinum(II) acetylacetonate and Iron(II) acetylacetonate in a nucleophilic solvent and they were characterized by scanning electron microscopy (SEM), energy dispersive X-ray analyzer (EDS), thermogravimetric analyzer (TGA), transmission electron microscopy (TEM), Brunauer, Emmett and Teller (BET) surface area analysis and anion exchange membrane (AEM) water electrolysis test station. The distribution of the Pt and Fe nanoparticles on carbon black was observed by TEM, and the loading weight of Pt-Fe nanocatalysts on the carbon black was measured by TGA. Elemental ratio of Fe:Pt was estimated by EDS and it was found that elemental ratio of Pt and Fe was changed in the range of 1:0 to 0:1, and the loading weight of Pt-Fe nanoparticles on the carbon black was 5.95-6.78 wt%. Specific surface area was greatly reduced because Pt-Fe nanocatalysts blocked the pores. I-V characteristics were estimated.

Effect of potassium permanganate pretreatment of pitch on the textural properties of pitch-based activated carbons

  • Kim, Dae-Won;Park, Soo-Jin
    • Carbon letters
    • /
    • v.12 no.3
    • /
    • pp.167-170
    • /
    • 2011
  • Petroleum pitch-based activated carbons (ACs) were obtained in this work from a combination of pretreatment with different amounts of potassium permanganate ($KMnO_4$) and chemical activation with potassium hydroxide. The surface characteristics of the pitch after the $KMnO_4$ pretreatment were characterized by means of Fourier transform infrared spectroscopy (FT-IR). The structural characteristics of the pitch after the $KMnO_4$ pretreatment were determined by means of X-ray diffraction. The influence of the $KMnO_4$ treatment on the textural properties of the petroleum pitch-based ACs was investigated by means of $N_2$/77K adsorption isotherms. The investigation also involved the use of the Brunauer-Emmett-Teller equation and the Dubinin-Radushkevich method. The FT-IR results show that the pretreatment promotes the formation of surface oxygen functionalities and leads to an increase of the interplanar distance ($d_{002}$) of the functional groups induced between carbon layers. Moreover, the specific surface area of the pitch-based ACs increases in proportion to the amount of $KMnO_4$ pretreatment and reaches its highest value of 2334 $m^2$/g with 2 g of $KMnO_4$ because the surface oxygen groups of the pitch act as an active site during chemical activation.

Study of the Adsorbent-Adsorbate Interactions from Cd(II) and Pb(II) Adsorption on Activated Carbon and Activated Carbon Fiber

  • Kim, Dae Ho;Kim, Doo Won;Kim, Bo-Hye;Yang, Kap Seung;Lim, Yong-Kyun;Park, Eun Nam
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.1
    • /
    • pp.104-108
    • /
    • 2013
  • The adsorption characteristics of Cd(II) and Pb(II) in aqueous solution using granular activated carbon (GAC), activated carbon fiber (ACF), modified ACF (NaACF), and a mixture of GAC and NaACF (GAC/NaACF) have been studied. The surface properties, such as morphology, surface functional groups, and composition of various adsorbents were determined using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) measurements. The specific surface area, total pore volume, and pore size distribution were investigated using nitrogen adsorption, Brunauer-Emmett-Teller (BET), and Barrett-Joyner-Halenda (BJH) methods. In this study, NaACF showed a high adsorption capacity and rate for heavy metal ions due to the improvement of its ion-exchange capabilities by additional oxygen functional groups. Moreover, the GAC and NaACF mixture was used as an adsorbent to determine the adsorbent-adsorbate interaction in the presence of two competitive adsorbents.

Catalytic Oxidation of CO over Manganese Dioxide Nanoparticles Synthesized Using a High Pressure Homogenizer (고압 균질기를 통해 합성된 이산화망간 나노입자에 의한 일산화탄소의 촉매적 산화)

  • Ji, Sunghwa;Kim, Hyojin
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.1
    • /
    • pp.22-28
    • /
    • 2020
  • In this study, manganese dioxide (MnO2) nanoparticles were synthesized from KMnO4 and MnCl2·4H2O without any dispersing agents and oxidant via ultra-high pressure homogenization process. We investigated various physicochemical properties and CO oxidation reactions of the MnO2 nanoparticles as a function of the number of passes at 1,500 bar in a high pressure homogenizer nozzle. The observed X-ray diffraction patterns and scanning electron microscopy images revealed that the synthesized MnO2 nanoparticles had a hexagonal structure and a uniform spherical shape. It was found from the Brunauer-Emmett-Teller measurements that the pore size of the MnO2 nanoparticles ranged from 23.6 to 7.2 nm and their specific surface area ranged from 24 to 208 m2g-1. In particular, it was confirmed from the measurements of CO conversion into CO2 that CO oxidation reaction over the MnO2 nanoparticles exhibited excellent catalytic activity at low temperatures below 100℃.

Synthesis of Mesoporous Titanium Dioxide Nanoparticles and Their Application into Dye Sensitized Solar Cells (다공성 산화타이타늄 나노입자 합성과 염료감응형 태양전지 응용)

  • Kim, Whidong;Ahn, Jiyoung;Kim, Soohyung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.64.2-64.2
    • /
    • 2010
  • In order to improve the overall power conversion efficiency in dye-sensitized solar cells (DSSCs), it is very important to secure the sufficient surface area of photocatalytic nanoparticles layer for absorbing dye molecules. It is because increasing the amount of dye absorbed generally results in increasing the amount of light harvesting. In this work, we proposed a new method for increasing the specific surface area of photocatalytic titanium oxide ($TiO_2$) nanoparticles by using an inorganic templating method. Salt-$TiO_2$ composite nanoparticles were synthesized in this approach by spray pyrolyzing both the titanium butoxide and sodium chloride solution. After aqueous removal of salt from salt-$TiO_2$ composite nanoparticles, mesoporous $TiO_2$ nanoparticles with pore size of 2~50 nm were formed and then the specific surface area of resulting porous $TiO_2$ nanoparticle was measured by Brunauer-Emmett-Teller (BET) method. Generally, commercially available P-25 with the average primary size of ~25 nm $TiO_2$ nanoparticles was used as an active layer for dye-sensitized solarcells, and the specific surface area of P-25 was found to be ~50 $m^2/g$. On the other hand, the specific surface area of mesoporous $TiO_2$ nanoparticles prepared in this approach was found to be ~286 $m^2/g$, which is 5 times higher than that of P-25. The increased specific surface area of $TiO_2$ nanoparticles will absorb relatively more dye molecules, which can increase the short curcuit current (Jsc) in DSSCs. The influence of nanoporous structures of $TiO_2$ on the performance of DSSCs will be discussed in terms of the amount of dye molecules absorbed, the fill factor, the short circuit current, and the power conversion efficiency.

  • PDF

Synthesis of Ultrafine LaAlO$_3$ Powders with Good Sinterability by Self-Sustaining Combustion Method Using (Glycine+Urea) Fuel ((Glycine+Urea) 혼합연료를 이요한 자발착화 연소반응법에 의한 우수한 소결성의 초미분체 LaAlO$_3$ 분말 합성)

  • Nam, H.D.;Choi, W.S.;Lee, B.H.;Park, S.
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.2
    • /
    • pp.203-209
    • /
    • 1999
  • LaAlO3d single phase used as the butter layer on Si wafer for YBa2Cu3O7-$\delta$ superconductor application were prepared by solid state reaction method and by self-sustaining combustion process. The microstructure and crystallity of synthesiszed LaAlO3 powder studied using scanning electron microscope (SEM) and X-ray diffractometer(XRD), specific surface area and sintering characteristics fo powder were investigated by Brunauer-Emmett-Teller (BET) method and dilatometer respectively. In solid state reaction method, it is difficult to obtain LaAlO3 single phase up to 150$0^{\circ}C$ period. However, in self-sustaining combustion process, it is to easy to do it only $650^{\circ}C$. Based on the results of analysis of dilatometer it is easier to obtain high sintering density (98.87%) in self-sustaining combustion process than in the solid state reaction method. This reason is that the average particle size prepared by self-sustaining combustion process is nano crystal size and has high specific surface are value(56.54 $m^2$/g) compared with that by solid state reaction method. Also, LaAlO3 layer on the Si wafer has been achieved by screen printing and sintering method. Even though the sintering temperature is 130$0^{\circ}C$, the phenomena of silicon out diffusion in LaAlO3/Si interphase are not observed.

  • PDF