이 연구는 부모의 미디어 중재유형이 청소년의 방송프로그램 등급제 실효성 인식에 미치는 영향을 파악하기 위해 실시되었다. 이를 위해 중학생 520명을 대상으로 설문조사를 실시했다. 등급제 실효성은 등급제가 어린이와 청소년을 유해한 콘텐츠로부터 잘 보호한다는 믿음과 반드시 필요한 제도라는 믿음을 의미한다. 분석결과, 중학생들이 부모의 미디어 중재가 '자율적/지지적 제한'이라고 인식할수록 등급제의 실효성이 크다고 인식하지만, '통제적 중재'라고 인식할수록 등급제는 실효성이 없는 제도라는 인식이 강하다는 점을 발견했다. 이와 함께, 폭력적 미디어에 많이 노출되는 중학생일수록 등급제는 실효성이 없다고 생각하는 경향이 강하게 나타났다. 이 결과는 연령에 맞지 않는 부적절한 콘텐츠를 제한하는 이유에 대해 자녀와 대화를 나누되 부모가 명확한 논리를 제시하는 중재 유형이 등급제의 실효성을 강화하는데 효과적일 수 있다는 점을 의미한다.
협력 필터링 기반의 추천 시스템은 현재 다양한 분야의 상업용 시스템의 필수불가결한 기능으로서, 사용자들이 선호할만한 상품을 맞춤형으로 제공해 주는 유용한 서비스이다. 그러나, 사용자들의 평가 데이타가 불충분할 경우 선호상품의 예측이 부정확할 우려가 크다. 본 연구에서는 이러한 단점을 해결하기 위하여 단계적으로 상품의 평가치를 예측하는 방안을 제시한다. 각 단계에 해당하는 예측 방법의 적용 조건을 만족하지 못할 경우 다음 단계의 방법을 적용한다. 제안 방법의 성능 평가를 위해, 공개 데이터셋을 활용한 실험을 진행하였으며, 제안 방법은 여러 전통적 유사도 척도를 도입한 협력 필터링 시스템의 예측 성능과 정밀도 성능을 크게 향상시켰고, 평가데이터 희소성 해결을 위한 기존 방식들의 성능을 능가하는 결과를 보였다.
본 연구는 애니메이션 총량제 시행의 한계점을 보완하여 그 개선방안을 마련하는 데 있다. 본 연구는 방송업계종사자, 애니메이션업계 종사자, 애니메이션전공 교수, 관련 연구자, 관련 정부부처 등 관련전문가 10여명이 2009년 1월부터 3월까지 8차에 걸쳐 총량제에 대한 토론을 거치면서 문제점과 대안을 마련하는 전문가 인터뷰와 집단 회의를 통한 방법론을 사용하였다. 총량제가 도입된 지 4년이 지나면서 신규애니메이션 제작물량의 증가, 기업체수의 증가 등의 양적인 팽창을 보여 왔으나 시청률의 지속적인 하락, 시청률이 낮은 시간대로의 애니메이션 방송, 애니메이션의 질적 하향 평준화, 총량제의 지상파 한정, 최소물량 확보수단으로 변질 등의 한계점이 나타났다. 이러한 한계점에 대해 다음과 같은 3가지 개선안을 마련하였다. 첫째, 케이블 및 위성으로의 총량제 확대, 둘째 프라임타임대 방송의 인센티브제공, 셋째 미디어 주도형 투자 지원 등이다. 특히 이 연구는 이러한 애니메이션 정책은 강제규정이 아니라 지원제도로 시행함으로써 업계의 자발적인 참여를 통해 시장원리가 적용되도록 유도해야 한다는 점을 강조하고 있다.
미국과 일본이 민간자율의 등급분류제도를 운영하고 있는 것과 달리 프랑스와 우리나라는 공공기관이 이 기능을 담당하고 있다. 하지만 제한상영관이 없는 제한상영가 등급의 문제점, 방송을 비롯한 매체들은 영화와 달리 사전심의를 받지 않는다는 점, 비용부담의 문제 등을 감안할 때 우리의 제도는 개선이 필요하고, 대안 중 하나가 등급분류기관을 민간자율로 전환하는 것이다. 민간자율의 등급분류제도 도입방법은 메이저 영화사들이 중심이 되어 등급분류협회를 설립하고 그 산하에 등급분류위원회를 두되 위원회 운영의 독립성을 보장하는 것이다. 정부는 저예산 예술영화의 심의료를 지원하고 청소년보호단체 등이 공정한 심의과정과 결과 준수를 감시하도록 지원할 필요가 있다. 영화산업이 등급분류제도의 민간자율화에 적극 나서지 않는 다는 사실이 가장 큰 걸림돌이지만, 표현의 자유 신장을 위해 합리적 방안을 찾는 노력이 필요하다.
협력 필터링 기반의 추천 시스템은 사용자들의 평가 이력을 바탕으로 하여 현 사용자가 선호할 만한 상품들을 추천해 주며 현재 다양한 상업용 목적의 필수불가결한 기능이다. 추천 상품을 결정하기 위하여, 유사한 평가 이력을 기반으로 미평가 상품들에 대한 선호 예측치를 산출하는데, 기존 연구에서 대개 두 가지 방법, 즉, 유사 사용자 기반 또는 유사 항목 기반 방법을 각기 개별적으로 활용해 왔다. 이들 방법들은 사용자들의 평가 데이터가 희소할 경우 또는 유사 사용자나 유사 항목을 구하기 어려울 경우에 산출한 예측치의 정확성이 저하되는 문제점이 있다. 본 연구에서는 이들 두가지 방법을 통합하여 평가치를 예측하는 새로운 방법을 제안한다. 제안 방법의 장점은 보다 많은 수의 유사 평가치들을 참조할 수 있으므로 추천의 질이 향상된다는 점이다. 성능 실험 결과 제안 방법은 희소한 데이터셋에서 예측치 정확도, 추천 항목 적합도, 항목 순위 적합도의 모든 측면에서 기존 방법의 성능을 크게 향상시켰으며, 다소 밀집한 데이터셋에서는 예측치 정확도 측면에서는 가장 우수하고, 다른 평가 척도에서는 기존 방법과 대등한 결과를 보였다.
최근 디지털 컨텐츠와 컨텐츠 사용자의 기하 급수적인 증가와 함께 recommender 시스템이 주목을 받으며 많은 응용 프로그램에 적용되고 있는 가운데, recommender 시스템의 확장성과 대체적으로 이와 반비례하는 정확성이 이슈가 되고 있다. 본 논문에서는 recommender 시스템 모델 중 하이브리드 모델의 매트릭스를 제거하고 아이템의 특성을 정하기 위해 클러스터링 기술을 사용한 Scalable Hybrid Recommender System을 제안한다. 제안된 모델은 recommender 시스템의 확장성과 정확성을 향상시키기 위해서 아이템에 대한 사용자의 평가 정보, demographic 정보와 구체적인 시간 정보를 사용한다. Reduction 기술 사용을 통해 Item-feature 매트릭스의 사이즈를 축소하고, 사용자 demographic 정보를 사용하여 temporal aware hybrid user model을 만든 후, 비슷한 정보를 가진 사용자간 클러스터링을 통해, 가장 유사한 정보를 가진 사용자들을 추출하여, 사용자간 정보를 비교함으로써 사용자가 원하는 아이템의 특성을 예상하고 사용자에게 N개의 아이템을 추천함으로써, 기존의 recommender 시스템보다 더욱 향상된 결과를 도출해 낼 수 있는 알고리즘을 제시하였다.
Journal of the Korean Data and Information Science Society
/
제21권1호
/
pp.185-194
/
2010
In recommender systems which are used widely at e-commerce, collaborative filtering needs the information of user-ratings and neighbor user-ratings. These are an important value for recommendation in recommender systems. We investigate the in-formation of rating in NBCFA (neighbor Based Collaborative Filtering Algorithm), we suggest new algorithm that improve prediction accuracy of recommender system. After we analyze relations between two variable and Error Value (EV), we suggest new algorithm and apply it to fitted line. This fitted line uses Least Squares Method (LSM) in Exploratory Data Analysis (EDA). To compute the prediction value of new algorithm, the fitted line is applied to experimental data with fitted function. In order to confirm prediction accuracy of new algorithm, we applied new algorithm to increased sparsity data and total data. As a result of study, the prediction accuracy of recommender system in the new algorithm was more improved than current algorithm.
출범한 지 5년이 지나고 있는 종합편성채널은 생방송 위주의 생산체계를 구축하고 있다. 생방송 비율이 높다는 것은 뉴스와 시사프로그램의 높은 비중을 의미하는데, 특히 시사프로그램의 생방송 생산방식이 지니는 의미는 중요하다. 종합편성채널의 생방송 시사프로그램은 뉴스보다 속보성에서 앞서면서 시청자들을 그 사건에 참여하는 것처럼 느끼게 하는 동시에 해설, 토론, 추론 등이 뒤섞이는 특징을 지닌다. 생방송 비중이 높은 종합편성채널들은 스튜디오 제작 스태프들을 보유하고 있는 자회사를 설립해 뉴스와 시사프로그램을 생산하고 있으며, 연출자들은 자회사에 소속되어 있다. 종합편성채널들은 재방송 전략을 통해 전체 시청률을 향상시키기 위하여 본방송 시기와 관계없이 재방프로그램을 선정하고 있다. 이는 새로운 프로그램을 개발하기보다는 성공한 프로그램들을 장기적으로 제작하는 생산방식에 영향을 미치며, 노출 다양성 제고를 제한하는 요인으로 작용하고 있다.
International journal of advanced smart convergence
/
제9권3호
/
pp.42-48
/
2020
These days people are overwhelmed by information on the Internet thus searching for useful information becomes burdensome, often failing to acquire some in a reasonable time. Recommender systems are indispensable to fulfill such user needs through many practical commercial sites. This study proposes a novel similarity measure for user-based collaborative filtering which is a most popular technique for recommender systems. Compared to existing similarity measures, the main advantages of the suggested measure are that it takes all the ratings given by users into account for computing similarity, thus relieving the inherent data sparsity problem and that it reflects the uncertainty or vagueness of user ratings through fuzzy logic. Performance of the proposed measure is examined by conducting extensive experiments. It is found that it demonstrates superiority over previous relevant measures in terms of major quality metrics.
Journal of the Korean Data and Information Science Society
/
제21권4호
/
pp.803-811
/
2010
This study analyzes the characteristics of preference ratings by dividing estimated values into four groups according to rank correlation coefficient after obtaining preference estimated value to user's ratings by using collaborative filtering algorithm. It is known that the value of standard error of skewness and standard error of kurtosis lower in the group of higher rank correlation coefficient This explains that the preference of higher rank correlation coefficient has lower extreme values and the differences of preference rating values. In addition, top n recommendation lists are made after obtaining rank fitting by using the result ranks of prediction value and the ranks of real rated values, and this top n is applied to the four groups. The value of top n recommendation is calculated higher in the group of higher rank correlation coefficient, and the recommendation accuracy in the group of higher rank correlation coefficient is higher than that in the group of lower rank correlation coefficient Thus, when using standard error of skewness and standard error of kurtosis in recommender system, rank correlation coefficient can be higher, and so the accuracy of recommendation prediction can be increased.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.