• Title/Summary/Keyword: Broadband ultrasonic transducer

Search Result 10, Processing Time 0.023 seconds

Bandwidth Enhancement of a Broadband Ultrasonic Mosaic Transducer using 48 Tonpilz Transducer Elements with 12 Resonance Frequencies (12 주파수의 48 tonpilz 진동소자를 이용한 광대역 초음파 모자이크 변환기의 대역폭 확장)

  • Lee, Dae-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.3
    • /
    • pp.302-312
    • /
    • 2014
  • This article describes the design and performance characteristics of a broadband ultrasonic mosaic transducer. We focus on the improved bandwidth in the high frequency band of a previously designed broadband ultrasonic transducer (Lee et al., 2014). The improvement in the pulse-echo bandwidth was achieved by employing twelve $2{\times}2$ element subarrays, operating at different resonance frequencies, and utilizing the mosaic array concept. We found that the -6 dB and -12 dB bandwidths of the newly developed broadband ultrasonic mosaic transducer, were up to 155% and 170% of the previously designed model, with a quality factor of 1.71 and 1.25, respectively. The averaged TVR (transmitting voltage response), SRT (receiving sensitivity), and FOM (figure of merit) values in a nearly flat transmitting response band, from 45 to 105 kHz providing a -12 dB bandwith of 60 kHz, were 163.3 dB (re $1{\mu}Pa/V$ at 1 m), -192.8 dB (re $1V/{\mu}Pa$), and -30.9 dB, respectively.

Design and Development of a Broadband Ultrasonic Transducer Operating over the Frequency Range of 40 to 75 kHz (40-75 kHz의 주파수 범위에서 동작하는 광대역 초음파 변환기의 설계 및 개발)

  • Lee, Dae-Jae;Kwak, Min Son;Kang, Hee-Young
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.3
    • /
    • pp.292-301
    • /
    • 2014
  • The objective of this study was to design and develop a broadband ultrasonic transducer that has both wide bandwidth and high sensitivity to measure broadband echoes related to identifying fish species. A broadband ultrasonic transducer providing a nearly flat transmitting response band of 40.2-75.5 kHz with a -12 dB bandwidth of 35.3 kHz was achieved by integrating 12 tonpilz transducer elements operating at different resonance frequencies. The average transmitting voltage response, receiving sensitivity, and figure of merit values in this frequency band were 168.4 dB (re $1{\mu}Pa/V$ at 1 m), -196.8 dB (re $1V/{\mu}Pa$), and -28.4 dB, respectively. The results suggest that bandwidth and sensitivity can be widened and improved by adjusting the array pattern and the structure of tonpilz transducer elements.

Study on Electrical Impedance Matching for Broadband Ultrasonic Transducer (광대역 초음파 변환기를 위한 전기 임피던스 정합 연구)

  • Kim, Geonwoo;Kim, Ki-Bok;Baek, Kwang Sae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.37 no.1
    • /
    • pp.37-43
    • /
    • 2017
  • Ultrasonic transducers with high resolution and resonant frequency are required to detect small defects (less than hundreds of ${\mu}m$) by ultrasonic testing. The resonance frequency and resolution of an ultrasonic transducer are closely related to the thickness of piezo-electric materials, backing materials, and the electric impedance matching technique. Among these factors, electrical impedance matching plays an important role because it can reduce the loss and reflection of ultrasonic energy differences in electrical impedance between an ultrasonic transducer and an ultrasonic defects detecting system. An LC matching circuit is the most frequently used electric matching method. It is necessary for the electrical impedance of an ultrasonic transducer to correspond to approximately $50{\Omega}$ to compensate the difference in electrical impedance between both connections. In this study, a 15 MHz immersion ultrasonic transducer was fabricated and an LC electrical impedance circuit was applied to that for having broad-band frequency characteristic.

Design of Ultrasound Dynamic Focusing Systems (초음파 다이나믹 집속 시스템의 설계)

  • 김진하;김청월
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.21 no.4
    • /
    • pp.65-71
    • /
    • 1984
  • The design formular of optical focusing systems cannot be applied to ultrasonic B scanners, which use broadband pulses instead of continuous wave. In this paper, a calculation method is studied for analyzing the propagation of ultrasonic broadband pulse excited by ultrasonic array transducers. Using the results, seveial design parameters such as the number of transducer elements, delay time, and the focal point are determined to obtain high resolution in the ultrasonic dynamic focusing system. A dynamic focusing system with low-noise switching characteristics; which attains lateral resolution of 2-3mm all along the axial direction up to 18 cm with a 3.5 MHz linear array transducer, was implemented.

  • PDF

The Design of Broadband Ultrasonic Transducers for Fish Species Identification - Control of the Resonance Frequency of a Piezoelectric Transducer with Two Pair of Electodes - (어종식별을 위한 광대역 초음파 변환기의 설계 -I - 전극분할형 압전진동자의 주파수특성 제어 -)

  • 이대재
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.33 no.3
    • /
    • pp.183-188
    • /
    • 1997
  • A method for designing a broadband transducer was investigated experimentally. Control of the resonance frequency of a Piezoelectric circular transducer with two pairs of electrodes was achieved by varying the inductance of external coil connected across the terminal of one pair of electrodes of transducer. The conductance curves of transducer in water were obtained as a function of the inductance value in mH of the coil used in the tuning. As the tuning inductance is increased in value, the resonance frequency is reduced toward the fundamental frequency of 50 kHz. This interesting result suggest that it is possible to produce a continuously tunable transducer covering a frequency range between 61.3 kHz and 121.7 kHz by varying the inductance value of external coil from 2.7 mH to 15.0 mH. One of other problems in the design and construction of such broadband transducer is the transducer efficiency, but this will be the subject of our future work.

  • PDF

Characteristics Variation Analysis by Shape of Piezoelectric Ultrasonic Transducer with Non-Uniform Thickness (두께 불균일 압전 초음파 트랜스듀서의 형태에 따른 특성변화 해석)

  • Kim, Dong-Hyun;Kim, Jung-Soon;Kim, Moo-Joon;Ha, Kang-Lyeol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.6
    • /
    • pp.271-278
    • /
    • 2008
  • The electro-mechanical characteristics were theoretically analyzed for the wideband ultrasonic transducer made of non-uniform thickness piezoelectric vibrator. This paper proposes a combination of exponential functions which describes the thickness variation along the length of the vibrator to derive the input admittance and power transfer function of the transducer. The bandwidth and the power transfer function of the transducer were investigated while the lateral shape of the vibrator changes. The results showed there is an optimum shape for the wideband characteristics of the transducer, and the bandwidth has increased up to over 100% as the ratio of minimum value of thickness to maximum value decreases. However, the power transfer function had a downward trend as the ratio of thickness decreases. Also we confirmed that even though the value of transfer function increases as the length of the piezoelectric vibrator increases, the shape providing wideband characteristics is very limited. It means that precision processing is required to manufacturing a wideband ultrasonic transducer with high efficiency.

The Design of Broadband Ultrasonic Transducers for Fish Species Identification - Bandwidth Enhancement of a Ultrasonic Transducer Using Double Acoustic Matching Layers- (어종식별을 위한 광대역 초음파 변환기의 설계 ( III ) - 이중음향정합층을 이용한 초음파 변환기의 대역폭 확장 -)

  • 이대재
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.34 no.1
    • /
    • pp.85-95
    • /
    • 1998
  • The broadband ultrasonic transducers have been designed to use in obtaining the broadband echo signals from fish schools in relation to the identification of fish species. The broadening of bandwidth was achieved by attaching double acoustic matching layers on the front face of a Tonpilz transducer consisted of an aluminum head, a piezoelectric ring, a brass tail and to evaluate the performance characteristics, such as the transmitting voltage response(TVR) of transducers. The constructed transducers were tested experimentally and numerically by changing the parameters such as impedances and thicknesses of the head, tail and matching layers, in the water tank. Also, the developed transducer was excited by a chirp signal and the received chirp waveforms were analyzed. According to the measured TVR results, the available 3 dB bandwidth of the transducer with double matching layers of an $Al_O_3/epoxy$ composite of 7 mm thick and a polyurethane window of 18 mm thick was 7.3 kHz with a center frequency of 38.8 kHz, and the maximum and the minimum values of the TVR in this frequency region were 135.7 dB and 132.7 dB re $1\;{\mu}Pa/V$ at 1 m, respectively. Also, the available 3 dB bandwidth of the transducer with double matching layers of an $Al_O_3/epoxy$ composite of 11 mm thick and a polyurethane window of 15 mm thick was 6.2 kHz with a center frequency of 38.6 kHz, and the maximum TVR value in the frequency region was 136.3 dB re $1\;{\mu}Pa/V$ at 1 m. Reasonable agreement between the experimental results and the numerical results for the TVR of the developed transducers was achieved. The frequency dependant characteristics of experimentally observed chirp signals closely matched to the measured TVR results. These results suggest that there is potential for increasing the bandwidth by varying other parameters in the transducer design and the material of the acoustic matching layers.

  • PDF

Analysis of the Propagation Characteristics of Ultrasonic Guided Waves Excited by Single Frequency and Broadband Sources

  • Kang, To;Song, Sung-Jin;Kim, Hak-Joon;Cho, Young-Do;Lee, Dong-Hoon;Cho, Hyun-Joon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.6
    • /
    • pp.570-578
    • /
    • 2009
  • Excitation and propagation of guided waves are very complex problems in pipes due to their dispersive nature. Pipes are commonly used in the oil, chemical or nuclear industry and hence must be inspected regularly to ensure continued safe operation. The normal mode expansion(NME) method is given for the amplitude with which any propagating waveguide mode is generated in the pipes by applied surface tractions. Numerical results are calculated based on the NME method using different sources, i.e., non-axisymmetric partial loading and quasi-axisymmetric loading sources. The sum of amplitude coefficients for 0~nineth order of the harmonic modes are calculated based on the NME method and the dispersion curves in pipes. The superimposed total field which is namely the angular profile, varies with propagating distance and circumferential angle. This angular profile of guided waves provides information for setting the transducer position to find defects in pipes.

Analysis of Broadband Ultrasonic Field Response and its Application to the Design of Focused Annular Array System (광대역 초음파 장 응답의 해석과 집속된 Annular Array 영상 시스템 설계에의 응용)

  • Rho, Gyoung-Tae;Song, Tae-Kyung;Park, Song-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1987.07b
    • /
    • pp.1252-1255
    • /
    • 1987
  • In this paper an approach for the analysis of the transient field response of radially symmetric transducer due to a wideband ultrasonic pulse is presented, which is based on a development of Green's function and applies the linear system theory to obtain an analytic expression for the impulse response of an annulus with a planar or spherical geometry. For the focused annular array, the impulse responses of the indivisual annuli are convolved with the delayed excitation pulse, and then summed to obtain the resultant response of the array. This process is very effective in the study of the various focusing abilities of the annular array. For illustration, the field distribution of a five element annular array is treated in detail for several focusing system.

  • PDF

The Design of Broadband Ultrasonic Transducers for Fish Species Identification - Dual Resonance Design of a Ultrasonic Transducer Using a Single Acoustic Matching Layer - (어종식별을 위한 광대역 초음파 변환기의 설계 II - 단일음향정합층을 이용한 이중공진형 변환기의 설계 -)

  • 이대재
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.34 no.1
    • /
    • pp.74-84
    • /
    • 1998
  • A doubly resonant ultrasonic transducer has been designed as an attempt to increase the bandwidth of underwater transducers. The dual resonance conditions were accomplished by attaching a single acoustic matching layer on the front face of a Tonpilz transducer consisted of an aluminum head, a piezoelectric ring, a brass tail and a prestress bolt. A modified Mason's model was used for the performance analysis and the design of transducers, and the constructed transducers were tested experimentally and numerically by changing the impedances and thicknesses of the head, tail and matching layers in the water tank. Two distinct resonance peaks in the transmitting voltage response(TVR) of a developed transducer were observed at 34.3 and 40.4 kHz, respectively, with the difference frequency of 6.1kHz and the center frequency of 37.2kHz. The values of TVR at these frequencies were 136.5 dB re $1\;\muPa/V$ at 34.3 kHz and 136.8 dB re $1\;\muPa/V$ at 40.4 kHz, respectively. Reasonable agreement between the experimental results and the numerical results was achieved. From this result, it is expected that the generation of the distinct resonances at any two desired frequencies can be achieved through the proper choice of the matching layer to provide the impedance transformation between the transducer and the medium.

  • PDF