• Title/Summary/Keyword: Broadband antenna

Search Result 367, Processing Time 0.028 seconds

The Design of the Broadband Sleeve Monopole Antenna using loading Coil (로딩 코일을 이용한 광대역 슬리브 모노폴 안테나의 설계)

  • 강상원;최광제
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2001.11a
    • /
    • pp.106-110
    • /
    • 2001
  • In this paper, a broadband sleeve monopole antenna using a loading coil in sleeve is proposed. The antenna of the proposed structure has the same of the single sleeve monopole antenna, except for using the coil instead of the inner conductor in sleeve. As a result, it is found that the bandwidth is 1.239~2.154 GHz(above 53.9%) for S$\sub$11/=-10dB(VSWR<2), and the antenna impedance is good for a communication system and feeder which the impedance has 50$\Omega$.

  • PDF

Design and Radiation Characteristics of Printed-Sleeve Monopole Antennas (프린트 슬리브 모노폴 안테나의 설계 및 복사 특성)

  • Seo Seung-Up;Choi Hak-Keun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.9 s.100
    • /
    • pp.926-931
    • /
    • 2005
  • In this paper, the printed-sleeve monopole antenna which has the small size and the broadband characteristics, is presented and its radiation characteristics are investigated. To conform the broadband characteristics of the proposed antenna, the experimental antenna is designed, fabricated, and its radiation characteristics are measured in PCS band (1.75 GHz${\~}$1.87 GHz). It is shown that the designed antenna has the non-directional pattern in the horizontal plane, the directional pattern in the vertical plane, VSWR less than 1.5, and gain in 2.14 dBi${\~}$3.4 dBi. From these results, the proposed antenna is conformed as a broadband antenna which can be used for the mobile communication indoor antenna extensively.

Design of a Broadband Sleeve Monopole Antenna by Using Matching Characteristics of the Sleeve (슬리브 정합 특성을 이용한 광대역 슬리브 모노폴 안테나 설계)

  • Ryu, Han-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.6839-6845
    • /
    • 2015
  • The optimization design method for the broadband operation of the sleeve monopole was proposed to unify the multiple antennas essential to the multi-functional broadband wireless communication systems into one antenna. The structure of the sleeve part was optimized to enhance the impedance matching characteristics based on the theoretical analysis that sleeve part can works as the open stub. The thick monopole was used for the broadband operation. The radius of the sleeve and the permittivity of the dielectric inside the sleeve was optimized to enhance the impedance matching characteristics for the broadband operation. The optimized sleeve monopole having thick monopole shows broadband characteristics over 3:1 bandwidth, from 0.8 to 2.43 GHz, which is suitable for the commercial wireless communication system. The proposed broadband sleeve monopole can reduce multiple antennas essential to the multi-functional broadband systems to one antenna.

Broadband polarimetric Microstrip Antennas for Space-borne SAR

  • Hong, Lei;Qunying, Zhang;Guang, Fu
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.465-470
    • /
    • 2002
  • A novel phased array antenna system for space-borne polarimetric SAR is proposed and completed in this paper.The antenna system assures polarimetric and multi-mode capability of SAR. It has broadband, high polarization isolation and high port to port isolation. The antenna system is composed of broadband polarimetric microstrip antenna, T/R modules and multifunction beam controller nit. The polarimetric microstrip antenna has more than 100MHz bandwidth at L-band with -30dB polarization isolation and high port to port isolation. The microstrip element and T/R module's structure and characteristics, the subarray's performances measuring results are presented in detail in this paper. A design scheme on beam controller of the phased array antenna is also proposed and completed, which is based on Digital Signal Processing (DSP) chip -TMS320F206. This beam controller unit has small size and high reliability compared with general beam controller. In addition, the multifunction beam controller unit can acquire and then send the T/R module's working states to detection system in real time.

  • PDF

Broadband planar dipole with a t-shaped slit for digital TV Reception (t형 슬릿을 갖는 디지털 TV 수신용 광대역 평면 다이폴)

  • Lee, Jong-Ig;Yeo, Junho;Yang, Myung-Ku;Lee, Yoon-Ju;Kwon, Jun-Hyuk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.159-160
    • /
    • 2014
  • In this paper, a design method for a broadband planar dipole antenna for the terrestrial digital television (DTV) reception is studied. The proposed antenna is an asymmetrical planar dipole consists of a rectangular patch with an embedded t-shaped slit, and the antenna shape is printed on a side of an FR4 substrate. The effects of geometrical parameters on the antenna performance are examined, and the parameters are adjusted to operate in the DTV frequency band of 470-806 MHz. The prototype antenna is fabricated on an FR4 substrate with a size of $260mm{\times}30mm$. The performance of the antenna is tested experimentally to verify the results of this study.

  • PDF

CPW Fed Ultra Wide Band Slot Antenna (초광대역 CPW 급전 슬롯안테나)

  • 김기수;박동국
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.7
    • /
    • pp.663-668
    • /
    • 2003
  • In this paper, a CPW fed slot antenna with novel broadband feed structure is presented. To enhance the impedance bandwidth of the slot antenna we proposed the broadband feed structure of new bow-tie slot which is combined with four λ/2 rectangular radiation slot and inductively coupled. The measured 10 dB impedance bandwidth is about 60 %(5.2∼9.4 GHz) and the simulated antenna gain is about 6 dBi at 7.36 GHz.

Broadband Stacked Patch Antenna with Low VSWR and Low Cross-Polarization

  • Wang, Zhongbao;Fang, Shaojun;Fu, Shiqiang
    • ETRI Journal
    • /
    • v.32 no.4
    • /
    • pp.618-621
    • /
    • 2010
  • A low cross-polarization broadband stacked patch antenna is proposed. By means of the stacked patch configuration and probe-fed strip feed technique, the VSWR 1.2:1 bandwidth of the patch antenna is enhanced to 22% from 804 MHz to 1,002 MHz, which outperforms the other available patch antennas (<10%). Furthermore, the antenna has a cross-polarization level of less than -20 dB and a gain level of about 9 dBi across the operating bandwidth. Simulation results are compared with the measurements, and a good agreement is observed.

A Study of Broadband Propagation Characteristics for The Future Mobile Communications(I) - Broadband Propagation Characteristics Measurements on Indoor (차세대 이동통신에서의 광대역 전파특성 연구(I)-실내에서의 광대역 전파특성 측정-)

  • 하덕호
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.2
    • /
    • pp.265-277
    • /
    • 1998
  • In this paper, to investigate the possibility of fading reduction effect and high transmission rate in indoor multipath propagation environment, we measured and analyzed broadband signal conducting by frequency sweeping method in LOS(Line-of-Sight) environment. In measuring, we used vertically polarized, horizonatally polarized and circularly polarized and circularly polarized antenna to compare the fading reduction effect and the characteristic of bandwidth amplitude fluctuation between each broadband signals. As a result, it can be seen that the circularly polarized antenna can reduce the amplitude deviation of the broadband signal because it can remove the odd-times reflected wave in LOS environment. And also, It was found that the best effective diversity reception method is to use polarization branches, which install a circularly polarized antenna at the transmitting end and compose the vertical and horizontal antenna at the receiving end.

  • PDF

A Broadband High Gain Planar Vivaldi Antenna for Medical Internet of Things (M-IoT) Healthcare Applications

  • Permanand, Soothar;Hao, Wang;Zaheer Ahmed, Dayo;Falak, Naz;Badar, Muneer;Muhammad, Aamir
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.12
    • /
    • pp.245-251
    • /
    • 2022
  • In this paper, a high gain, broadband planar vivaldi antenna (PVA) by utilizing a broadband stripline feed is developed for wireless communication for IoT systems. The suggested antenna is designed by attaching a tapered-slot construction to a typical vivaldi antenna, which improves the antenna's radiation properties. The PVA is constructed on a low-cost FR4 substrate. The dimensions of the patch are 1.886λ0×1.42λ0×0.026λ0, dielectric constant Ɛr=4.4, and loss tangent δ=0.02. The width of the feed line is reduced to improve the impedance bandwidth of the antenna. The computed reflection coefficient findings show that the suggested antenna has a 46.2% wider relative bandwidth calculated at a 10 dB return loss. At the resonance frequencies of 6.5 GHz, the studied results show an optimal gain of 5.82 dBi and 85% optimal radiation efficiency at the operable band. The optometric analysis of the proposed structure shows that the proposed antenna can achieve wide enough bandwidth at the desired frequency and hence make the designed antenna appropriate to work in satellite communication and medical internet of things (M-IoT) healthcare applications.

A Design of Broadband Biconical Antenna with Tapered Section (테이퍼 구조를 갖는 광대역 바이코니컬 안테나의 설계)

  • Kim, Jun-Kyu;Lee, In-Jae;Yoon, Hyun-Bo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.11 s.114
    • /
    • pp.1096-1104
    • /
    • 2006
  • In this paper, the broadband antenna for the combined base station of Cellular/PCS/IMT-2000/Wibro and S-DMB services is designed and the proposed antenna allows having sufficient coverage for each service band. In order to get the broadband impedance matching, the tapered sections are applied on the both terminus of hi-conical respectively. The design parameter is calculated and simulated by using FDTD method. As a result, the measured bandwidth of the proposed antenna is $0.79GHz{\sim}2.93GHz$ and the gain is distributed from 5.5 dBi up to 8.19 dBi.