• Title/Summary/Keyword: Broadband Radiation

Search Result 155, Processing Time 0.023 seconds

Experimental investigation into infrasound and low-frequency noise radiation characteristics from large wind turbines (중대형 풍력터빈의 저주파 및 초저주파 소음 방사 특성에 대한 실험적 고찰)

  • Lee, Seung-Yub;Cheong, Cheol-Ung;Shin, Su-Hyun;Jung, Sung-Soo;Cheung, Wan-Sup
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1482-1489
    • /
    • 2007
  • In this paper, characteristics of infrasound and low-frequency noise emission from large modern wind turbines are experimentally investigated. The sound measurement procedures of IEC 61400-11 and ISO 7196 are utilized to field test and evaluation of noise emission from each of 1.5 MW and 660 kW wind turbines using the stall regulation and the pitch control for the power regulation, respectively. It was found that the G-weighted SPLs of low-frequency noise including infrasound shows positive correlation with the wind speeds, irrespective of methods of power regulation. This highlights the potential complaint of local community against the infrasound and low-frequency noise of wind turbines. The comparison of measured data with the existing hearing thresholds and criteria curves shows that it is highly probable that the low-frequency noise from the 1.5 MW and 660 kW wind turbines in the frequency range over 30 Hz leads to the psychological complaint of ordinary adults, and that the infrasound in the frequency range from 5 Hz to 8 Hz causes the complaint by rattling the house fitting such as doors and windows.

  • PDF

Wideband Slot-Coupled Microstrip Antenna with The Reflector (반사판을 갖는 슬롯 결합 급전을 이용한 광대역 마이크로스트립 안테나)

  • Kim, On;Kim, Gun-Kyun;Rhee, Seung-Yeop
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.6
    • /
    • pp.1045-1052
    • /
    • 2019
  • In this paper, the slot-coupled microstrip antenna structure with reflector is used for broadband. The reflector of this structure is designed to reduce the radiation emitted from the slot and minimize the influence of external electromagnetic environment while reducing the overall antenna height. Experimental results show that the antenna is very well matched with VSWR below 1.4 at 1.942.17GHz, and the maximum gain of the antenna in this band was measured 9.21dBi. The measured results shows that it can be used in the wireless communication field or IoT field of other frequency band in the future.

Using Unmanned Aerial Vehicles (UAVs) to Study on the Climate Impacts of the Atmospheric Brown Clouds (무인항공기를 이용한 대기갈색연무의 기후효과 연구)

  • Kim, Sang-Woo;Yoon, Soon-Chang
    • Atmosphere
    • /
    • v.20 no.4
    • /
    • pp.519-530
    • /
    • 2010
  • In this paper we review current research on Atmospheric Brown Clouds (ABCs) with lightweight Unmanned Aerial Vehicles (UAVs) and miniaturized instruments. The UAV technology for in-situ measurements, including aerosol concentration, aerosol size distribution, aerosol absorption, cloud drop size distribution, solar radiation fluxes (visible and broadband), and spectral radiative fluxes, is a leading-edge technology for cost-effective atmospheric sounding, which can fill the gap between the ground measurement and satellite observation. The first experimental observation with UAVs in Korea, Cheju ABC Plume Monsoon Experiment (CAPMEX), conducted during summer 2008 revealed that the Beijing plumes exerted a strong positive influence on the net warming and fossil-fuel-dominated black-carbon plumes were approximately 100% more efficient warming agents than biomass-burning-dominated plumes. Long-term sustainable routine UAV measurements will eventually provide truly three-dimensional data of ABCs, which is necessary for the better understanding of their climate impacts and for the improvement of numerical models for air pollution, weather forecast and climate change.

CPW-Fed π-Shaped Antenna for Wideband (CPW급전 광대역 파이형 안테나)

  • Kang, Young-Man;Ceong, Hyi-Thaek;Rhee, Seung-Yeop
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.2
    • /
    • pp.291-298
    • /
    • 2018
  • In this paper, we propose an antenna that improves narrow band characteristics which is a disadvantage of inverted-F type antenna and utilizes the structural advantages of small size and low profile by modifying the inverted-F type antenna structure and applying CPW feeding method. Experimental results show that the broadband characteristic of about 40% at the center frequency of 3 GHz is seen, and it is found that the narrow band characteristic which is a disadvantage of the conventional inverted F antenna can be improved. The radiation pattern showed almost omnidirectional characteristics and the maximum gain was about 2.0dBi.

Pulsar observation with KVN

  • Kim, Chunglee;Dodson, Richard;Jung, Taehyun;Sohn, Bong Won
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.52.1-52.1
    • /
    • 2014
  • Radio pulsars are highly magnetized, rapidly rotating neutron stars that emit synchrotron radiation along the magnetic axes at their spin frequencies. Traditionally, pulsar observations have been done at low frequencies (MHz up to a few GHz), since radio pulsar spectrum is known to a power-law with a steep negative spectral index. More recently, high-frequency pulsar observations (several GHz and above) have been made as a broadband spectrometer and fast computers became available. High-frequency pulsar observations will provide information on radio emission mechanism of pulsars in the vicinity of the neutron star surface. There is also huge interest from gravitational-wave and astrophysics community to find a pulsar in the center of our Galaxy. The Korean VLBI Network has three 21-m single dishes in the Korean peninsula. Using KVN's lowest observational frequency of 22-GHz, we performed test observations with the KVN targeting a few selected known, bright pulsars. In addition, we have been developing pulsar pipelines that can be utilized with a VLBI facility using Mark-V. We present a brief introduction of radio pulsars and show data obtained with the KVN.

  • PDF

Design of Planar Type Modified Monopole Antennas (평면형 변형된 모노폴 안테나 설계)

  • Lee, Hyeon-Jin;Jung, Jin-Woo;Lim, Yeong-Seog
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.7
    • /
    • pp.72-76
    • /
    • 2008
  • In this paper, the several printed square loop antennas which modified monopole antennas are proposed. The proposed antennas are reduced about 20% physical size of antenna and miniaturized reactance value of impedance due to fold center part of the loop. They obtained omni-directional radiation patterns with broad bandwidth and feed method used coplanar waveguide to composed single planar. The proposed antenna bandwidth is about 900MHz($2.63{\sim}3.56GHz]$) resonance frequency on $VSWR{\le}2$. it can be sufficiency of S-DMB band.

The Design of Wideband Printed Saw Tooth Monopole Antenna (광대역 기판 인쇄형 톱날구조를 갖는 모노폴 안테나 설계)

  • Kim Nan-Ki;Go Jin-Hyun;Ha Jae-Kwon;Rhee Seung-Yeop
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.10 s.89
    • /
    • pp.915-921
    • /
    • 2004
  • In this paper, we propose a printed monopole antenna called the saw tooth monopole antenna(STMA) with a very wide band. And impedance matching of the antenna for the wideband is achieved using a special matching structure to vary ground size of back plate. The proposed antenna is smaller than general $\lambda$/4 monopole antenna in size but provides a 2:1 VSWR bandwidth of about $89.6\%$. The radiation pattern is omni-directional at 0.8 GHz$\~$2.0 GHz with gain of about -0.02 dBi$\~$2.54 dBi.

A Study on Notched Wi-Fi Bandwidth of Planar Monopole Antenna with Edge (에지를 가진 평면 모노폴 안테나의 무선랜 대역 저지에 관한 연구)

  • Lee, Yun Min;Lee, Jae Choon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.4
    • /
    • pp.43-49
    • /
    • 2013
  • In this paper, it is designed inverted triangle structural planar monopole antenna with edge and rectangle slot for UWB(Ultra Wide Band) communication (3.1~10.6 GHz) and researched in about 5.8 GHz notch structure to prevent interference between UWB systems and existing wireless systems for using Wi-Fi service. The antenna have broadband property structurally through inverted triangle structural planar monopole which have edge. and rectangle form addition planned notch slot of 1 mm and height 0.1 mm. Monopole and ground of proposed antenna exist on coplanar plane, and excite as CPW. It used FR4 epoxy dielectric substrate of ${\varepsilon}r$=4.4, and the size is $20{\times}20{\times}1.6$ mm dimension. The measured results that are obtained return loss under -10 dB through 3.1~10.6 GHz(7.5 GHz) without Wi-Fi bandwidth and maximum gain of 8.44 dBi at E-plane. Radiation pattern is about the same that of dipole antenna at all frequency. And using notch slot and it will be able to confirm the quality which becomes notch from 5.8 GHz which are a radio LAN frequency range.

An Antenna-Integrated Oscillator Design Providing Convenient Control over the Operating Frequency and Output Power (동작주파수 및 출력파워 조절이 용이한 신호생성용 안테나 설계)

  • Lee, Dong-Ho;Lee, Jong-In;Kim, Mun-Il
    • Journal of Satellite, Information and Communications
    • /
    • v.1 no.1
    • /
    • pp.54-58
    • /
    • 2006
  • A new design for easily controlling operating frequency of an antenna-integrated planar oscillator is introduced. The oscillator circuit of a broadband negative-resistance active part and a passive load including a patch antenna. The patch resonance is used for determining the oscillation frequency. This design reduces the possibility of mismatch between antenna radiation and oscillation frequencies. To achieve optimum output power, load-pull simulation for the negative-resistance circuit is used. The load-pull simulation shows the feed point and the delay of feed line can affect the oscillation power. Two negative-resistance circuits capable of supporting oscillation over full C-band and X-band are fabricated. The oscillation frequency, output power and phase noise for different patch antennas are measured.

  • PDF

Status of squeezed vacuum experiment and introduction to EPR (한국천문연구원의 진공양자조임 광원 개발 및 EPR 실험 소개)

  • Kim, Chang-Hee;Lee, Sungho;Park, June Gyu;Kim, Yunjong;Jeong, Ueejeong;Je, Soonkyu;Seong, Hyeon Cheol;Han, Jeong-Yeol
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.37.2-37.2
    • /
    • 2021
  • One of the main limitations to the ground- based gravitational-wave (GW) detector sensitivity is quantum noise, which is induced by vacuum fluctuations entering the detector output port. The replacement of this ordinary vacuum field with a squeezed vacuum field has proven to be effective approach to mitigate the quantum noise in the interferometer detector and it is currently used in advanced detectors. However, the current frequency-independent squeezed vacuum cannot reduce quantum radiation pressure noise at low frequencies. A possible solution to reduce quantum noise in the broadband spectrum is the injection of frequency-dependent squeezed (FDS) vacuum. We will report the current status of squeezing experiment at KASI and introduce to the EPR (Einstein-Podolsky-Rosen) entangled state of light, which can realize FDS light without the need for an additional, external cavity.

  • PDF