• Title/Summary/Keyword: Brittle porcelain

Search Result 13, Processing Time 0.019 seconds

Contact fatigue and strength degradation in dental ceramics (치아용 세라믹스에서의 접촉피로 및 강도저하)

  • 정연길;이수영;최성철
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.5
    • /
    • pp.527-533
    • /
    • 1999
  • Hertzian indentation tests with spherical indenters in water were conducted to examine the contact fatigue in three dental ceramics, such as feldspathic porcelain, micaceous glass-ceramic (MGC) and glass-infiltrated alumina, which was used as dental restorations, and evaluated the effect of contact damage on strength. Initial damage was dependent of microstructure, showing cone cracks of brittle behavior in the feldspathic porcelain and deformation of quasi-plastic behavior in the MGC, with an intermediate case in the glass-infiltrated alumina. However, as increasing the number of cyclic loading (n=1~n =$10^6$)all materials showed an abrupt strength degradation, at which fracture was originated from damage in the contact fatigue. There were two strength degradation with increasing the number of cyclic loading in specific loads (200N, 500N, 1000N):first was from the cone cracks, and second was from the radial cracks created by cyclic loading. The radial cracks, once formed, led to rapid degradation in strength properties, Finally the material was failed at the high number of cyclic loading. Strength degradation with indentation load at fixed number of cyclic loading indicated that the feldspathic porcelain should be highly damage tolerant to the contact fatigue.

  • PDF

COMPARATIVE STUDY OF FRACTURE STRENGTH DEFENDING ON THE THICKNESS OF SOME ALL CERAMIC CORES (수종의 전부도재관 코어의 두께에 따른 파절강도의 비교 연구)

  • Kim Doo-Yong;Lee Young-Soo;Park Won-Hee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.1
    • /
    • pp.49-57
    • /
    • 2004
  • Statement of problem : The increased awareness of esthetics in dentistry has brought the esthetic consideration in prosthetic restorations . Dental ceramics offer better esthetics for use of prosthetic restorations. Unfortunately, dental ceramic materials are not always the most suitable candidate materials since their inherently brittle nature. In recent years, basic research in ceramic science has led to the recognition or several approaches to strengthen and to enhance esthetics of ceramics. Several all ceramic systems use ceramic core and porcelain build up structures . Ceramic cores influence to strength of all ceramic crowns . So the strength of ceramic cores is important to all ceramic crowns. Purpose : The purpose of this study is to estimate the flexural strength of ceramic cores in some all ceramic systems. Material and method : A biaxial flexure test was conducted on three groups(Cergo, Empress 2, In-Ceram). Each group consisted of 30 discs of nearly identical dimension with a 0.5mm, 1.0mm, 1.5mm thickness and 12mm in diameter. The fracture load was recorded by Instron. Analysis of valiance(ANOVA) and Tukey's tests were performed using SAS statistical software. Results : 1.5mm thickness of specimens were significantly stronger than 0.5mm and 1.0mm thickness of specimens in Cergo and In-Ceram. But each sepecimen group of Empress 2 was no significantly strength by thickness. In order of In-Ceram, Empress 2 and Cergo has significantly stronger strength in the same thickness. Conclusion : In-Ceram is the strongest ceramic material in 3 materials. All the materials can be used according to the required characters.

FEA estimates of margin design in all ceramic crowns (완전 도재관을 위한 지대치 형성시 변연 형태에 따른 응력 분포의 유한요소법적 비교)

  • Han, Sang-Hyun;Cho, Jung-Hyeon;Lee, En-Jung;Jeong, Suk-In;Oh, Nam-Sik
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.1
    • /
    • pp.1-11
    • /
    • 2008
  • Statement of problem: Over the past decade, increased demand for esthetically pleasing restorations has led to the development of all-ceramic systems. Recent reports suggest that the all-ceramic crowns have excellent physical properties, wear resistance, and color stability. In addition, numerous ceramics have excellent biocompatibility, a natural appearance, and improved physical bonding with resin composite luting agents. However, the brittle nature of ceramics has been a major factor in their restriction for universal usage. Functional occlusal loading can generate stress in the luting agent, and the stress distribution may be affected by the marginal geometry at the finish line. Tooth preparation for fixed prosthodontics requires a decision regarding the marginal configuration. The design dictates the shape and bulk of the all ceramic crowns and influences the fit at the margin. Purpose: The purpose of this study was to evaluate the stress distribution within marginal configurations of all- ceramic crowns (90-degree shoulder, 110-degree shoulder, 135-degree shoulder). Material and methods: The force is applied from a direction of 45 degrees to the vertical tooth axis. Three-dimensional finite element analysis was selected to determine stress levels and distributions. Results and conclusion: The result of stress level for the shoulder marginal configuration was more effective on stress distribution at 135-degree shoulder margin. But the stresses concentrated around at 135-degree shoulder margin. The stress decreased apically at the surface between cements and alumina core, and increased apically at the surface between alumina core and veneering porcelain.