• Title/Summary/Keyword: Brittle material

Search Result 478, Processing Time 0.023 seconds

Tensile Design Criteria Evaluation of Cast-In-Place Anchor by Numerical Analysis (수치해석에 의한 직매형 앵커기초의 인장 설계기준 평가)

  • 장정범;서용표;이종림
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.209-216
    • /
    • 2004
  • Numerical analysis is carried out to identify the appropriateness of the design codes that is available for the tensile design of fastening system at Nuclear Power Plant (NPP) in this study. This study is intended for the cast-in-place anchor that is widely used for the fastening of equipment in Korean NPPs. The microplane model and the elastic-perfectly plastic model are employed for the quasi-brittle material like concrete and for the ductile material like anchor bolt as constitutive model for numerical analysis and smeared crack model is employed for the crack and damage phenomena. The developed numerical model is verified on a basis of the various test data of cast-in-place anchor. The appropriateness of both ACI 349 Code and CCD approach of CEB-FIP Code is evaluated for the tensile design of cast-in-place anchor and it is proved that both design codes give a conservative results compared with real tensile capacity of cast-in-place anchor.

  • PDF

Strength Evaluation and Life Prediction of the Multistage Degraded Materials (다단계 모의 열화재의 재료강도 평가와 수명예측)

  • 권재도;진영준;장순식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2271-2279
    • /
    • 1993
  • In the case of life prediction on the structures and machines after long service, it is natural to consider a degradation problems. Most of degradation data form practical structures are isolated data obtained at the time of periodical inspection or repair. From such data, it may be difficult to obtain the degradation curve available and necessary for life prediction. In this paper, for the purpose of obtaining a degradation curves, developed the simulate degradation method and fatigue test and Charpy impact test were conducted on the degraded, simulate degraded and recovered materials. Fatigue life prediction were conducted by using the relationship between fracture transition temperature (DBTT : vTrs) obtained from the Charpy impact test through the degradation process and fatigue crack growth constants of m and C obtained from the fatigue test.

Surface Grinding of Tungsten Carbide for High Quality Unign Diamond Wheel

  • Seoung-Jung Heo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.4 no.3
    • /
    • pp.12-24
    • /
    • 1995
  • Various surface grinding experiments using resin bonded diamond abrasive wheels are carried out for tungsten carbide materials in order to minimize the damage on the ground surface and to purse the precise dimension compared to conventional grinding machine. When grinding quality is constant, theoretical grinding effect is changed according to the speed of workpiece. Accordingly, grinding forces, which are Fn, Ft, were analyzed for the machining processes of tungsten-carbide material to obtain optimum grinding conditions. Brief investigation is carried out to decrease the dressing efficiency of resinoid bonded diamond grinding wheel to grind tungsten-carbide. Truing is also carried out to provide a desired shape on a wheel or to correct a dulled profile. High quality in dimensional accuracy and surface are often required as a structural components, therefore 3-points bending test is carried out to check machining damage on the ground surface layer, which in one of sintered brittle material. From this experimental study, some useful machining data and information to determine proper machining condition for grinding of tungsten-carbide materials are obtained.

  • PDF

A Study on the Grinding Characteristics of the Quartz (Quartz의 연삭 특성에 관한 연구)

  • Lim, Jong-Go;Ha, Sang-Baek;Kim, Sung-Hun;Choi, Hwan;Lee, Jong-Chan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.7
    • /
    • pp.106-111
    • /
    • 2001
  • This study reports the grinding characteristics of quartz. Grinding experiments were performed at various grinding conditions including wheel mesh, table speed and depth of cut. The grinding forces and specific grinding energies were measured. Surface roughness was also measured with tracer and the ground surfaces were observed with SEM. A new parameter SDR(Surface roughness Direction Ratio) is proposed to characterize the grinding mechanisms of quartz. A set of experiments was performed to verify the effectiveness of the suggested parameter. The experimental results indicate that the ductile mode is the dominant material removal mode at the grinding conditions which show the higher value of SDR whereas the material is removed by brittle fracture in a lower value of SDR value increases with wheel mesh size.

  • PDF

A Variation of Maximum Stress with Axial Loading in Porcelain Insulators for Transmission Line using ANSYS (ANSYS를 이용한 송전용 자기재 애자의 장력에 따른 특성 변화)

  • Woo, B.C.;Han, S.W.;Cho, H.G.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05e
    • /
    • pp.104-107
    • /
    • 2003
  • The ageing cause in many porcelain suspension insulators which occur on transmission and distribution line with dead-end stings is mechanical stress in interface between porcelain and cement materials. It is known that the principal mechanical stress which give electrical failure is the results of the displacement is due to cement growth. We studied an analysing method to find out a deformation of brittle porcelain with a thermal expansion of cement for suspension insulator. These simulation analysis and experimental results show that cement volume growths affect severely to be mechanical failure ageing. These simulation analysis and experimental results show that axial loading affects of Porcelain insulators severely to be mechanical failure ageing.

  • PDF

Numerical Analysis on External Strengthening Effects in Aged Structures (사용중인 구조물의 보강효과에 대한 해석적 연구)

  • 신승교;임윤묵;김문겸;박동철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.455-460
    • /
    • 2002
  • In this study, a numerical analysis that can effectively predict the effect of strengthening of cracked flexural members is developed using axial deformation link elements. Concrete and interface between concrete and repair material are considered as quasi-brittle material. Reinforcing bars and reinforcing steel plates are assumed to perform as elasto-plastic materials. Unloading behavior of axial deformation link element is implemented. In the developed numerical model, a flexural member is intentionally cracked by pre-loading, then, the cracked member is repaired using extra elements, and reloaded. The results from analysis of repaired flexural members agrees well with available experiment results. Also, it was shown that the effect of strengthening and the change of failure mode with respect to the time for strengthening and thickness of repair materials. Based on the results, it was determined that the developed numerical model has a good agreement for determining failure modes and effect of strengthening in cracked flexural members. By utilizing the developed numerical analysis, the time and dimension of external strengthening in an existing cracked flexural member with predition of failure mechanism can be determined.

  • PDF

Critical Current Properties of Bi-2223/Ag tapes with respect to axial Strain (Bi-2223/Ag 고온 초전도 선재 변형에 따른 입계전류 특성)

  • 하홍수;오상수;하동우;심기덕;김상철;장현만;권영길;류강식
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.1
    • /
    • pp.69-73
    • /
    • 2001
  • In this study, we fabricated Bi-2223/Ag high temperature superconducting tapes using PIT(Powder-In-Tube) process to apply the superconducting magnet, cable and etc. It is inevitable to deform the superconducting taps with axial strain for application. Therefore, for the characterization of the strain sensitivity of the superconducting properties, the degradation of Bi-2223/Ag tapes due to axial strain were investigated by measuring the critical current as a function of applied tension strain and external magnetic field. The critical current of Bi-2223/Ag tapes were decreased slightly up to 0.3∼0.4% applied strain but, drastically decreased more than these strains. Superconducting filament cores consisted of brittle ceramic fibers were broken easily by the large strain and current path were decreased simultaneously.

  • PDF

Seismic Evaluation of Shear Wall System by Nonlinear Static Analysis Procedures (비선형 정적 해석을 통한 벽식구조물의 내진성능 평가)

  • 안성기;송정원;송진규;이수곤
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.63-68
    • /
    • 2000
  • Concrete is popular as a building material, however it is inherently brittle and performs poorly during earthquakes if nor reinforced properly. Traditional retrofit design techniques assume that buildings respond elastically to earthquakes. This assumption simplifies the analysis procedure but can lead to an erroneous conclusion. The complete nonlinear time history analysis is considered overly complex and impractical for general use. Simplified nonlinear analysis methods, referred to as nonlinear static analysis procedures, include the capacity spectrum method(CSM) developed in detail at ATC-40 and the displacement coefficient method(DCM) utilized at FEMA-273. In this study wall APT system. The results were compared and analyzed. The program used was neaMAX-3D to express nonlinear material.

  • PDF

Creep Behaviours of Glasses Rim Material Alloy (안경테소재 합금(Ti-6AI-4V)의 크리프 특성)

  • 황경충;윤종호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.248-253
    • /
    • 2003
  • Titanium alloy has widely been used as glasses rim material because it has high specific strength and also is light, harmless to men. But, we have little design data about the creep behaviors of the alloy. Therefore, in this study, an apparatus has been designed and built for conducting creep tests under constant load conditions. A series of creep tests on them have been performed to get the basic design data and life prediction of titanium products and we have gotten the following results. First, the stress exponents decrease as the test temperatures increase. Secondly, the creep activation energy gradually decreases as the stresses become bigger. Thirdly, the constant of Larson-Miller parameters on this alloy is estimated about 13. And last, the fractographs at the creep rupture show both the ductile and the brittle fracture according to the creep conditions.

  • PDF

분말야금법을 이용한 Ti-Ni 섬유강화 형상기억복합재료 특성에 관한 연구

  • 박민식;윤두표;박영철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.738-742
    • /
    • 1996
  • In the present paper, We have tried to reconfirm the "Interlligent" material properties using both the sintered TiNi/A(1100) matrix composite by powder metallurgy method. By using these specimen, Shape meorystrengthening effect in tensile strengthand fatigue crack propagation above inverse transformation temperature of TiNi fiber were investigated. More over, by SEM obsevation, the effect of the residual stress at the interface between A1 matrix and TiNi fiber and some brittle precipitation layers such as inter metallic compounds on fracture mechanisms was metallurgically discussed.discussed.

  • PDF