• Title/Summary/Keyword: British Columbia

Search Result 280, Processing Time 0.028 seconds

Microbe Hunting: A Curious Case of Cryptococcus

  • Bartlett Karen H.;Kidd Sarah;Duncan Colleen;Chow Yat;Bach Paxton;Mak Sunny;MacDougall Laura;Fyfe Murray
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.3
    • /
    • pp.199-206
    • /
    • 2005
  • C. neoformans-associated cryptococcosis is primarily a disease of immunocompromised persons, has a world-wide distribution, and is often spread by pigeons in the urban environment. In contrast, C. gattii causes infection in normal hosts, has only been described in tropical and semi-tropical areas of the world, and has a unique niche in river gum Eucalyptus trees. Cryptococcosis is acquired through inhalation of the yeast propagules from the environment. C. gattii has been identified as the cause of an emerging infectious disease centered on Vancouver Island, British Columbia, Canada. No cases of C. gattii-disease were diagnosed prior to 1999; the current incidence rate is 36 cases per million population. A search was initiated in 2001 to find the ecological niche of this basidiomycetous yeast. C. gattii was found in the environment in treed areas of Vancouver Island. The highest percentage of colonized-tree clusters were found around central Vancouver Island, with decreasing rates of colonization to the north and south. Climate, soil and vegetation cover of this area, called the Coastal Douglas fir biogeoclimatic zone, is unique to British Columbia and Canada. The concentration of airborne C. gattii was highest in the dry summer months, and lowest during late fall, winter, and early spring, months which have heavy rainfall. The study of the emerging colonization of this organism and subsequent cases of environmentally acquired disease will be informative in planning public health management of new routes of exposure to exotic agents in areas impacted by changing climate and land use patterns.

Review of the UBC Porcine Model of Traumatic Spinal Cord Injury

  • Kim, Kyoung-Tae;Streijger, Femke;Manouchehri, Neda;So, Kitty;Shortt, Katelyn;Okon, Elena B.;Tigchelaar, Seth;Cripton, Peter;Kwon, Brian K.
    • Journal of Korean Neurosurgical Society
    • /
    • v.61 no.5
    • /
    • pp.539-547
    • /
    • 2018
  • Traumatic spinal cord injury (SCI) research has recently focused on the use of rat and mouse models for in vivo SCI experiments. Such small rodent SCI models are invaluable for the field, and much has been discovered about the biologic and physiologic aspects of SCI from these models. It has been difficult, however, to reproduce the efficacy of treatments found to produce neurologic benefits in rodent SCI models when these treatments are tested in human clinical trials. A large animal model may have advantages for translational research where anatomical, physiological, or genetic similarities to humans may be more relevant for pre-clinically evaluating novel therapies. Here, we review the work carried out at the University of British Columbia (UBC) on a large animal model of SCI that utilizes Yucatan miniature pigs. The UBC porcine model of SCI may be a useful intermediary in the pre-clinical testing of novel pharmacological treatments, cell-based therapies, and the "bedside back to bench" translation of human clinical observations, which require preclinical testing in an applicable animal model.

Effects of Acute Moderate Hypoxemia on Kinetics of Metoclopramide and its Metabolites in Chronically Instrumented Sheep

  • Kim, Johr;Riggs, K.-Wayne;Rurak, Dan-W.
    • Archives of Pharmacal Research
    • /
    • v.25 no.5
    • /
    • pp.709-717
    • /
    • 2002
  • Hypoxemia is known to induce various physiological changes which can result in alteration in drug pharmacokinetics. To examine the effect of acute moderate hypoxemia on metoclopramide (MCP) pharmacokinetics, a continuous 14-hour infusion of MCP during a normoxemic, hypoxemic and subsequent normoxemic period was conducted in eight adult sheep. Arterial blood and urine samples were collected to examine the effects on the pharmacokinetics of MCP and its deethylated metabolites. MCP and its mono- and di-deethylated metabolites were quantitated using a GC/MS method. Steady-state concentrations of MCP were achieved in each of the three periods. During hypoxemia, MCP plasma steady-state concentration increased significantly from 50.72$\pm$1.06 to 63.62$\pm$1.79 ng/mL, and later decreased to 55.83$\pm$1.15 ng/mL during the post-hypoxemic recovery period. Total body clearance ($CL_{TB}$) of MCP was significantly decreased from 274.2$\pm$48.0 L/h to 205.40$\pm$28.2 L/h during hypoxemia, and later restored to 245.8$\pm$44.2 L/h during the post-hypoxemic period. Plasma mono-deethylated MCP concentration (32.78$\pm$1.73 ng/mL) also increased, compared to the control group (21.20$\\pm$1.39 ng/mL), during hypoxemia and subsequent normoxemic period. Renal excretion of MCP and its metabolites was also decreased during hypoxemia, while urine flow was increased with a concomitant decrease in urine osmolality. Thus, the results indicate that acute moderate hypoxemia affects MCP pharmacokinetics.

Chemical Constituents of the Moss Hylocomium splendens

  • Kang, Shin-Jung;Jovel, Eduardo;Hong, Seong-Su;Hwang, Bang-Yeon;Liu, Patty;Lee, Meng-Hsin;Lee, Meng-Chun;Lee, Kyung-Soon;Towers, George Hugh Neil
    • Natural Product Sciences
    • /
    • v.13 no.4
    • /
    • pp.394-397
    • /
    • 2007
  • Investigation of the chemical constituents of the dichloromethane extract from the moss Hylocomium splendens has led to the isolation of $5{\alpha},8{\alpha}$-epidioxy-24(S)-ethylcholesta-6,22-dien-$3{\beta}$-ol (1), diploptene (2), ${\beta}-sitosterol$ (3), and 1-hexacosanol (4). The chemical structures of 1 - 4 were established by spectroscopic methods including extensive 1D and 2D NMR analysis. This is the first isolation of compound 1 from the mosses, although it has been isolated from marine sponge.