• Title/Summary/Keyword: Brightness Temperature

Search Result 450, Processing Time 0.026 seconds

INTRINSIC BRIGHTNESS TEMPERATURE OF COMPACT RADIO SOURCES AT 86GHZ

  • Lee, Sang-Sung
    • Journal of The Korean Astronomical Society
    • /
    • v.46 no.6
    • /
    • pp.243-251
    • /
    • 2013
  • We present results on the intrinsic brightness temperature of a sample of compact radio sources observed at 86 GHz using the Global Millimeter VLBI Array. We use the observed brightness temperatures at 86 GHz and the observed superluminal motions at 15 GHz for the sample in order to constrain the characteristic intrinsic brightness temperature of the sample. With a statistical method for studying the intrinsic brightness temperatures of innermost jet cores of compact radio sources, assuming that all sources have the same intrinsic brightness temperature and the viewing angles of their jets are around the critical value for the maximal apparent speed, we find that sources in the sample have a characteristic intrinsic brightness temperature, $T_0=4.8^{+2.6}_{-1.5}{\times}10^9K$, which is lower than the equipartition temperature for the condition that the particle energy equals to the magnetic field energy. Our results suggest that the VLBI cores seen at 86 GHz may be representing a jet region where the magnetic field energy dominates the total energy in the jet.

Change of Intrinsic Brightness Temperatures of Compact Radio Jets

  • Lee, Sang-Sung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.57.1-57.1
    • /
    • 2014
  • We present results of our investigation of intrinsic brightness temperatures of compact radio jets at radio frequencies. The intrinsic brightness temperatures of about 100 compact radio jets at 2, 5, 8, 15, and 86 GHz are estimated based on large VLBI surveys conducted in 2001-2003 (or in 1996 for the 5 GHz sample). The multi-freqeuncy intrinsic brightness temperatures of the sample of the jets are determined with a statistical method relating the observed brightness temperatures with the maximal apparent jet speed, assuming one representative intrinsic brightness temperature for the sample at each observing frequency. With investigating the observed brightness temperatures at 15 GHz in multiple epochs, we found that the determination of the intrinsc brightness temperature for our sample is affected by variability of individual jets in flux density at the time scales of a few years. This implies an importance of contemporaneity of the multi-frequency VLBI observations for the statistical method. Since our analysis is based on the VLBI observations conducted in 2001-2003, the results are less affected by the flux density variability. We found that the intrinsic brightness temperature $T_0$ increases as $T_0{\propto}{\nu}^{\epsilon}$ with ${\epsilon}{\approx}0.7$ below a critical frequency ${\nu}_c{\approx}10GHz$ where energy losses begin to dominate the emission, and above the critical frequency, $T_0$ decreases with ${\epsilon}{\approx}-1.2$ supporting for the decelerating jet model.

  • PDF

INTRINSIC BRIGHTNESS TEMPERATURES OF COMPACT RADIO JETS AS A FUNCTION OF FREQUENCY

  • Lee, Sang-Sung
    • Journal of The Korean Astronomical Society
    • /
    • v.47 no.6
    • /
    • pp.303-309
    • /
    • 2014
  • We present results of our investigation of the radio intrinsic brightness temperatures of compact radio jets. The intrinsic brightness temperatures of about 100 compact radio jets at 2, 5, 8, 15, and 86 GHz are estimated based on large VLBI surveys conducted in 2001-2003 (or in 1996 for the 5 GHz sample). The multi-frequency intrinsic brightness temperatures of the sample of jets are determined by a statistical method relating the observed brightness temperatures with the maximal apparent jet speeds, assuming one representative intrinsic brightness temperature for a sample of jets at each observing frequency. By investigating the observed brightness temperatures at 15 GHz in multiple epochs, we find that the determination of the intrinsic brightness temperature for our sample is affected by the flux density variability of individual jets at time scales of a few years. This implies that it is important to use contemporaneous VLBI observations for the multi-frequency analysis of intrinsic brightness temperatures. Since our analysis is based on the VLBI observations conducted in 2001-2003, the results are not strongly affected by the flux density variability. We find that the intrinsic brightness temperature $T_0$ increases as $T_0{\propto}{\nu}^{\xi}_{obs}$ with ${\xi}=0.7$ below a critical frequency ${\nu}_c{\approx}9GHz$ where the energy loss begins to dominate the emission. Above ${\nu}_c$, $T_0$ decreases with ${\xi}=-1.2$, supporting the decelerating jet model or particle cascade model. We also find that the peak value of $T_0{\approx}3.4{\times}10^{10}$ K is close to the equipartition temperature, implying that the VLBI cores observable at 2-86 GHz may be representing jet regions where the magnetic field energy dominates the total energy in jets.

Desktop-LED lighting for Eye Muscle Movement by Adjusting the Light Illuminance and Color Temperature

  • Kim, Byoung-Chul;Kim, Seon-Jong;Kim, Joo-Man
    • International journal of advanced smart convergence
    • /
    • v.9 no.4
    • /
    • pp.203-208
    • /
    • 2020
  • In this paper, we propose the design and implementation of a desktop LED stand and smart app that automatically adjusts color temperature and illuminance for optimal brightness and eye health by improving the structural problem of the LED stand. It is a tabletop LED stand that supports optimal brightness through color temperature control and heat transfer through infrared LED to relieve eye strain through blood circulation and muscle movement. The LED stand works with the smartphone to automatically adjust the optimal brightness and color temperature for the user's environment. In addition, the brightness of the infrared LED is adjusted to a living frequency of 4Hz to relax the eye muscles and reduce eye strain. This study implemented an effective measured data-based system of previous studies through the color temperature and illumination of LED lighting, and near-infrared rays, and presented meaningful results by conducting an experiment to prove the effect through subjects.

Assessment of the Relationship between Air Temperature and TOA Brightness Temperature in Different Seasons Using Landsat-8 TIRS (Landsat-8 위성의 열적외 센서를 활용한 대기온도와 밝기온도의 계절별 상관관계 분석)

  • CHOUNG, Yun-Jae;CHUNG, Youn-In;CHOI, Soo-Young
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.2
    • /
    • pp.68-79
    • /
    • 2018
  • In general, Top Of Atmosphere(TOA) brightness temperature is closely related to air temperature. Brightness temperature can be derived from the Thermal Infra-Red Sensors (TIRS) of the earth observation satellites such as the Landsat series. The TIRS instrument of the Landsat-8 satellite collects the two spectral bands (Bands 10 and 11) that measure brightness temperature. In this research, the relationship between the air temperature data measured by the weather stations in Seoul, South Korea and the brightness temperature data separately derived from Bands 10 and 11 of the Landsat-8 satellite were assessed in the different seasons through the correlation analysis. The statistical results led to the following conclusions. First, brightness temperature is closely related to air temperature in order of Spring, Autumn, Winter and Summer. Second, when air temperature increases, brightness temperature also increases in Spring, Autumn and Winter but decreases in Summer. Third, Band 10 has a closer relationship to air temperature than Band 11.

Evaluation of Performance and Reliability of a White Organic Light-Emitting Diode(WOLED) Using an Accelerated Life Test(ALT) (가속수명시험(ALT)을 이용한 WOLED의 성능 및 신뢰성 평가)

  • Moon, Jin-Chel;Park, Hyung-Ki;Choi, Chung-Seog
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.4
    • /
    • pp.13-19
    • /
    • 2012
  • The purpose of this study is to extract the major factors related to the deterioration mechanism of white organic light-emitting diodes(WOLED) by performing accelerated testing of temperature, voltage, time, etc., and to develop an accelerated life test(ALT) model. The measurement results of the brightness of the WOLED exhibited that their average brightness tended to increase as the operating voltage increased and that the half-life period of the brightness appeared after approximately 400 hours when the operating voltage was 20V and the ambient temperature was $85^{\circ}C$. It could be seen that although the WOLED showed comparatively the same brightness when the initial acceleration began after the operating voltage was applied to it, its brightness changed excessively after the WOLED's thermal storage had been made. In addition, it was observed that the half-life period was reduced as the ambient temperature and applied voltage increased. The strength of the WOLED which had been maintained in the range of visible light at the maximum load was reduced by the deterioration of the organic light emitting material due to the influence of the operating voltage and temperature, and the reduction of emitted light was small at low voltage and temperature. It could be seen that the failure of the WOLED during the ALT was caused by wear due to load accumulation over time, and that Weibull distribution was appropriate for the life distribution and acceleration was established between test conditions. From the WOLED analysis, it is thought that factors influencing the brightness deterioration are voltage, temperature, etc., and that comprehensive analysis considering discharge control, dielectric tangent margin, etc., would further increase the reliability.

A Study on Possibility of Improvement of MIR Brightness Temperature Bias Error of KOMPSAT-3A Using GEOKOMPSAT-2A (천리안2A호를 이용한 다목적실용위성3A호 중적외선 밝기 온도 편향오차 개선 가능성 연구)

  • Kim, HeeSeob
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.12
    • /
    • pp.977-985
    • /
    • 2020
  • KOMPSAT-3A launched in 2015 provides Middle InfraRed(MIR) images with 3.3~5.2㎛. Though the satellite provide high resolution images for estimating bright temperature of ground objects, it is different from existing satellites developed for natural science purposes. An atmospheric compensation process is essential in order to estimate the surface brightness temperature from a single channel MIR image of KOMPSAT-3A. However, even after the atmospheric compensation process, there is a brightness temperature error due to various factors. In this paper, we analyzed the cause of the brightness temperature estimation error by tracking signal flow from camera physical characteristics to image processing. Also, we study on possibility of improvement of MIR brightness temperature bias error of KOMPSAT-3A using GEOKOMPSAT-2A. After bias compensation of a real nighttime image with a large bias error, it was confirmed that the surface brightness temperature of KOMPSAT-3A and GEOKOMPSAT-2A have correlation. We expect that the GEOKOMPSAT-2A images will be helpful to improve MIR brightness temperature bias error of KOMPSAT-3A.

Introduction to Simulation Activity for CMDPS Evaluation Using Radiative Transfer Model

  • Shin, In-Chul;Chung, Chu-Yong;Ahn, Myoung-Hwan;Ou, Mi-Lim
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.282-285
    • /
    • 2007
  • Satellite observed brightness temperature simulation using a radiative transfer model (here after, RTM) is useful for various fields, for example sensor design and channel selection by using theoretically calculated radiance data, development of satellite data processing algorithm and algorithm parameter determination before launch. This study is focused on elaborating the simulation procedure, and analyzing of difference between observed and modelled clear sky brightness temperatures. For the CMDPS (COMS Meteorological Data Processing System) development, the simulated clear sky brightness temperatures are used to determine whether the corresponding pixels are cloud-contaminated in cloud mask algorithm as a reference data. Also it provides important information for calibrating satellite observed radiances. Meanwhile, simulated brightness temperatures of COMS channels plan to be used for assessing the CMDPS performance test. For these applications, the RTM requires fast calculation and high accuracy. The simulated clear sky brightness temperatures are compared with those of MTSAT-1R observation to assess the model performance and the quality of the observation. The results show that there is good agreement in the ocean mostly, while in the land disagreement is partially found due to surface characteristics such as land surface temperature, surface vegetation, terrain effect, and so on.

  • PDF

Study on the Brightness Temperature Measurement in the Human Body Using Millimeter-wave Radiometer (밀리미터파 라디오미터를 이용한 인체의 내부 밝기온도 측정에 관한 연구)

  • Jung, Min Kyoo;Kim, Tae Hun;Nah, Seung Wook
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.5
    • /
    • pp.163-167
    • /
    • 2016
  • We have developed a millimeter-wave radiometer system for applications in the fields of medical imaging. In this paper, we introduced the brightness temperature measurement in the human body using Millimeter-wave Radiometer. Calibration of sensitivity of the radiometer system is essential to measure equivalent temperature (brightness temperature) of objects. We have developed, as a calibration source, a new type of black body for the millimeter wave region with temperature control capability. The system noise figure and temperature sensitivity of the system measured using the blackbody are 3.3 dB and 0.1 K, respectively. The brightness temperature of human body through clothes was measured to be around $38^{\circ}$[C].

The Effects of Injection Molding Conditions on Uniformity and Brightness of Light Guide Plate (도광판의 균일도 및 휘도에 사출성형조건이 미치는 영향)

  • Lee Sung-Hee;Kim S.W.;Lee H.S.;Kim J.D.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1609-1612
    • /
    • 2005
  • The effects of injection molding conditions on the uniformity and brightness of light guide plate(LGP) with micro-patterns were investigated in the present study. An injection molding system for stampers with mirco-pattern was designed and manufactured to perform experiment. Variations of injection molding speed, mold and melt temperature for LGP were considered in this work. Also, injection molding characteristics of LGP were investigated by numerical analysis using plastic injection molding commercial code. It was shown that injection molding conditions such as injection speed, melt temperature and mold temperature can have an effect on the uniformity and brightness of light guide plate.

  • PDF