• Title/Summary/Keyword: Bridging stress

Search Result 62, Processing Time 0.032 seconds

A study on the calculation of stress intensity factor for a patched crack using approximate weight function (근사적 가중함수를 이용한 보강된 균열평판의 응력강도계수 계산에 대한 연구)

  • Kim, Jong-Ho;Lee, Soon-Bok
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.123-128
    • /
    • 2000
  • A cracked-plate with a patch bonded on one side is treated with a crack-bridging model: assuming continuous distribution of springs acting between crack surfaces. the approximate weight function was introduced to obtain the stress intensity factor of patched crack subjected to residual stress or non-uniform stress. The stress intensity factors for the partially patched crack within finite plate or the patched crack initiated from a notch were successfully obtained by numerical calculation.

  • PDF

In Situ Observation of Slow Crack Growth in a Whisker-Reinforced Alumina Matrix Composite (SiC 휘스커 보강 알루미나 복합재료에서 Slow Crack Growth 현상의 직접관찰 연구)

  • 손기선;김우상;이성학
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.2
    • /
    • pp.203-213
    • /
    • 1996
  • In this study the subcritical crack growth behavior in an Al2O3-SiCw composite has been investigated using in situ fracture technique of applied moment double cantilever beam (AMDCB) specimens indside an SEM. This technique allows the detailed observation of whisker and grain bridging in the crack wake region. The experimental results indicated that the KI-a curve was deviated from the conventional powder law form and that the existed a region where the rate of microcrack growth was decreased with increasing the externally applied stress intensity factor. This behavior could be explained by arising crack growth resistance i.e. R-curve behavior which was associated with crack shielding due to whisker and grain bridging. The R-curve was also analyzed from the KI-a curve data in order to quantify the bridging effect in the Al2O3-SiCw composite.

  • PDF

Reinforcing Characteristics on Volume and Shape of Ductile Short-Fiber in Brittle Matrix Composites (취성기지 복합재료에서 연성 단섬유의 함유량 및 형상에 관한 보강특성)

  • Sin, Ik-Jae;Lee, Dong-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.250-258
    • /
    • 2000
  • The reinforcing effects of ductile short-fiber reinforced brittle matrix composites are studied by, measuring flexural strength, fracture toughness and impact energy as functions of fiber volume fraction and length. The parameters of fracture mechanics, K and J are applied to assess fracture toughness and bridging stress. It is found that fracture toughness is greatly, influenced by the bridging stress ill which fiber pull-out is occur. For the reinforcing effects as functions of fiber volume fraction($V_f$ = 1, 2, 3 %) and length(L = 3, 6. 10cm), the flexural strength is maximum at $V_f$ = 1% and both fracture toughness.

The Influence of Cyclic-bending Moment on the Delamination Zone and the Fatigue Crack Propagation in A15052/AFRP Laminates (반복-굽힘 모멘트가 A15052/AFRP 적층재의 층간분리 영역과 피로균열진전에 미치는 영향)

  • Song, Sam-Hong;Kim, Cheol-Woong
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.231-237
    • /
    • 2000
  • A15052/AFRP laminates were developed principally to obtain a material with good fatigue strength, in which possible cracks would grow very slowly. Weight savings of more than 30% should be attainable in practice. Also, the crack bridging fibers could still was carry a significant part of the load over the crack, thus the COD and stress intensity factor was reduced at the crack tip. A15052/ AFRP laminates consists of three thin sheets of 5052-H34 aluminum alloy and two layers of [0] unidirectional aramid fiber prepreg. The cyclic-bending moment test was investigated based on applying the five kinds of bending moments. The size of the delamination zone produced between 5052-H34 aluminum alloy sheets and fiber-adhesive layers was measured from ultrasonic C-scan pictures taken around the fatigue crack. In addition, the relationship between the cyclic-bending moment and the delamination zone size was studied and the effect of fiber bridging mechanism was also considered.

  • PDF

R-Curve Behavior of Particulate Composites of ${Al_2}{O_3}$ Containing SiC and $ZrO_2$: II. Theoretical Analysis (SiC와 $ZrO_2$를 함유하는 ${Al_2}{O_3}$ 입자복합체의 균열저항거동: II. 이론적 분석)

  • 나상웅;이재형
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.4
    • /
    • pp.368-375
    • /
    • 2000
  • Fracture toughness of particulate composites of Al2O3/SiC, Al2O3/ZrO2 and Al2O3/ZrO2/SiC was analysed theoretically. According to the suggested particle bridging model for obtaining the R-curve height, the crack extension resistance for the long crack was linearly proportional to the residual calmping stress at the interface between the second phase and the matrix. It was also a function of the particle size and the content. It was confirmed that the rising R-curve behavior of Al2O3 containing 30 vol% SiC particles of 3${\mu}{\textrm}{m}$ was owing to the strong crack bridging by SiC particles. For Al2O3/ZrO2/SiC composites, the tensional stress from the 3${\mu}{\textrm}{m}$ SiC particles was large enough to activate the spontaneous transformation of the ZrO2. The crack extension resistance due to the particle bridging mechanism did not seem to be affected much by the coupled toughening, but its resultant toughness increase could be significantly smaller due to the dependency on the matrix toughness.

  • PDF

Mechanical Properties of Intermetallic/Metal Laminated Composite by SHS Reaction (자전고온반응에 의한 금속간화합물/금속 적층복합재료의 기계적 특성)

  • ;;Manabu Enoki
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.60-63
    • /
    • 2002
  • Metal/intermetallic laminated composites have been manufactured by SHS reactions between Ni and Al elemental metal foils. Microstructure showed that the intermetallic volume fraction was 55%, 45%, 35% in the 1:1, 2:1, 4:1 thickness ratio(Ni:Al) specimen and the main phases of the intermetallic were transformed from $Ni_2Al_3$ to NiAl when the thickness ratio was increased. Tensile strength and elongation were increased when the volume fraction of Ni metallic phase was increased. Under assumptions of isostrain condition, the tensile strength of metal/intermetallic laminated composites didn't obey the ROM due to the thermal residual stress and this was confirmed by X-ray residual stress analysis. Fracture toughness results by the SENB test showed R-curves with upward curvature based on LSB condition. Bridging stress based on LSB condition was determined by the curve fitting analysis, In-situ observed microstructure during fracture test showed that the various bridging mechanism such as crack bridging, crack branching and ductile failure of metallic layer were occurred

  • PDF

The Relationship between Fiber Stacking Angle and Delamination Growth of the Hybrid Composite Material on an Aircraft Main Wing (항공기 주익용 하이브리드 복합재의 섬유배향각과 층간분리 성장과의 관계)

  • 송삼홍;김철웅;김태수;황진우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1402-1405
    • /
    • 2003
  • The main object of this study was evaluated by the delamination damage for fiber stacking angle. Therefore, this work need to compare the shape of delamination for a different fiber stacking angie. So this study uses a method of fatigue test which was created [0]$_2$,[+45]$_2$[90]$_2$. The extension of the delamination zone formed between aluminium alloy and glass fiber-adhesive layer were measured by an ultrasonic C-scan image. As a result, the shapes of delamination zone don't depend upon the crack propagation. We could know that the delamination zone grew interaction between stress flow of fiber layer and crack driving force. Hence, the existing study were applied to the stress transfer, fiber bridging effect, delaminantion growth rate should need to the develop useful factor because of change of fiber stacking angle.

  • PDF

Numerical Analysis of ECC Uniaxial Tension Behavior (ECC의 1축 인장 거동 해석)

  • Kim, Yun-Yong;Lee, Bang-Yeon;Kwon, Seung-Hee;Kim, Jeong-Su
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.917-920
    • /
    • 2008
  • ECC is a special kind of high performance cementititous composite which exhibits typically more than 2% tensile strain capacity by bridging microcracks at a crack section. Therefore, micromechanics should be adopted to obtain multiple cracking and strain hardening behavior. This paper propose a linear elastic analysis method to simulate the multiple cracking and strain hardening behavior of ECC. In an analysis, the stress-crack opening relation modified considering the orientation of fibers and the number of effective fibers is adopted. Furthermore, to account for uncertainty of materials and interface between materials, the randomness is assigned to the tensile strength(${\sigma}_{fci}$), elastic modulus($E_{ci}$), peak bridging stress(${\sigma}_{Bi}$) and crack opening at peak bridging stress(${\delta}_{Bi}$), initial stress at a crack section due to chemical bonding, (${\sigma}_{0i}$), and crack spacing(${\alpha}_cX_d$). Test results shows the number of cracking and stiffness of cracked section are important parameters and strain hardening behavior and maximum strain capacity can be simulated using the proposed method.

  • PDF

Mechanical Properties of High Strength Cement Composite with Carbon Fiber (탄소섬유 보강 고강도 시멘트 복합체의 기게적 특성에 관한 연구)

  • 전용희;한기성
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.2
    • /
    • pp.139-147
    • /
    • 1993
  • Two sheets of high strength cement paste using ordinary Portland cement and water soluble polymer (polyacrylamide) were made by kneading with a twin roll mill. A carbon fiber layer out between two sheet of the cement paste, and then carbon fiber reinforced high strength cement composites were prepared by pressing them. The mechanical properties of the composites were investigated through the observation of the microstructure and the application of fracture mechanics. When the carbon fiber was added with 0.2 and 0.3wt% to the composites the flexural strength and Young's modulus were about 110∼116MPa and 74∼77GPa respectively, and critical stress intensity was about 3.14MPam1/2. It can be considered that the strength improvement of high strength cement fiber composites may be due to the removal of macropores and the increase of various fracture toughness effects; grain bridging, frictional interlocking, polymer fibril bridging and fiber bridging.

  • PDF