• Title/Summary/Keyword: Bridges to Practice

Search Result 101, Processing Time 0.021 seconds

Development of Uncertainty-Based Life-Cycle Cost System for Railroad Bridges (불확실성을 고려한 철도 교량의 LCC분석 시스템 개발)

  • Cho, Choong-Yuen;Sun, Jong-Wan;Kim, Lee-Hyeon;Cho, Hyo-Nam
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1158-1164
    • /
    • 2007
  • Recently, the demand on the practical application of life-cycle cost effectiveness for design and rehabilitation of civil infrastructure is rapidly growing unprecedentedly in civil engineering practice. Accordingly, it is expected that the life-cycle cost in the 21st century will become a new paradigm for all engineering decision problems in practice. However, in spite of impressive progress in the researches on the LCC, so far, most researches in Koreahave only focused on roadway bridges, which are not applicable to railway bridges. Thus, this paper presents the formulation models and methods for uncertainty-based LCCA for railroad bridges consideringboth objective statistical data available in the agency database of railroad bridges management and subjective data obtained form interviews with experts of the railway agency, which are used to anew uncertainty-based expected maintenance/repair costs including lifetime indirect costs. For reliable assessment of the life-cycle maintenance/repair costs, statistical analysis considering maintenance history data and survey data including the subjective judgments of railway experts on maintenance/management of railroad bridges, are performed to categorize critical maintenance items and associated expected costs and uncertainty-based deterioration models are developed. Finally, the formulation for simulation-based LCC analysis of railway bridges with uncertainty-based deterioration models are applied to the design-decision problem, which is to select an optimal bridge type having minimum Life-Cycle cost among various railway bridges types such as steel plate girder bridge, and prestressed concrete girder bridge in the basic design phase.

  • PDF

Live Load Distribution in Prestressed Concrete I-Girder Bridges (I형 프리스트레스트 콘크리트 거더교의 활하중 분배)

  • Kim, Kwang-Yang;Kang, Dae-Hui;Lee, Hwan-Woo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.288-293
    • /
    • 2008
  • The standard prestressed concrete I-girder bridge (PSC I-girder bridge) is one of the most prevalent types for small and medium bridges in Korea. When determining the member forces in a section to assess the safety of girder in this type of bridge, the general practice is to use the simplified practical equations or the live load distribution factors proposed in design standards rather than the precise analysis through the finite element method or so. Meanwhile, the live load distribution factors currently used in Korean design practice are just a reflection of overseas research results or design standards without alterations. Therefore, it is necessary to develop an equation of the live load distribution factors fit for the design conditions of Korea, considering the standardized section of standard PSC I-girder bridges and the design strength of concrete. In this study, to develop an equation of the live load distribution factors, a parametric analysis and sensitivity analysis were carried out on the parameters such as width of bridge, span length, girder spacing, width of traffic lane, etc. Then, an equation of live load distribution factors was developed through the multiple linear regression analysis on the results of parametric analysis. When the actual practice engineers design a bridge with the equation of live load distribution factors developed here, they will determine the design of member forces ensuring the appropriate safety rate more easily. Moreover, in the preliminary design, this model is expected to save much time for the repetitive design to improve the structural efficiency of PSC I-girder bridges.

  • PDF

Seismic Analysis Models for Typical Roadway Bridges considering failure Mechanisms (파괴메카니즘을 고려한 일반도로교의 지진해석모델)

  • 국승규;김판배
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.295-301
    • /
    • 2001
  • For the seismic analysis of typical roadway bridges provisions are given in most codes for analysis models, which describes however only fundamental modelling methods according to the basic theories of structural dynamics. In practice even conventional non-seismic analysis models, separate super- and substructure models, are applied, which are not adequate because of neglecting connection elements. In this study three typical roadway bridges, a Steel box bridge, a PC beam bridge and a PC box bridge are selected and simple models integrating super- and substructure as well as connection elements are given. The simple models are composed with frame elements with lumped masses representing stiffness and mass characteristics of the selected bridges. To check the properness of the simple models, analysis results with the simple models are compared with those obtained with detailed models in view of bridge failure mechanisms. It is proved that the simple models can be used in the preliminary design phase fur the determination of failure mechanisms of typical roadway bridges.

  • PDF

Dynamic response of cable-stayed bridges subjected to sudden failure of stays - the 2D problem

  • Raftoyiannis, I.G.;Konstantakopoulos, T.G.;Michaltsos, G.T.
    • Coupled systems mechanics
    • /
    • v.3 no.4
    • /
    • pp.345-365
    • /
    • 2014
  • A significant problem met in engineering practice when designing cable-stayed bridges is the failure of cables. Many different factors can lead to sudden failure of cables, such as corrosion, continuous friction or abrasion, progressive and extended crevice created by fatigue and finally an explosion caused by sabotage or accident, are some of the causes that can lead to the sudden failure of one or more cables. This paper deals with the sudden failure of cables in a special form of cable-stayed bridges with a single line of cables anchored at the central axis of the deck's cross-section. The analysis is carried out by the modal superposition technique where an analytical method developed by the authors in a previous work has been employed.

Reliability-Based Assessment of Safety and Residual Load Carrying-Capacity of Curved Steel-Box Ramp Bridges (신뢰성에 기초한 강상형 곡선램프교의 안전도 및 잔존내하력 평가)

  • Cho, Hyo-Nam;Choi, Young-Min;Min, Dae-Hong
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.1 s.30
    • /
    • pp.51-63
    • /
    • 1997
  • Highly curved steel-box bridges are usually constructed as ramp structures for the highway interchange and metropolitan elevated highway junction, but a number of these bridges are deteriorated and damaged to a significant degree due to heavy traffic. The main objective of the study is to develop a practical reliability-based assessment of safety and residual load carrying-capacity of existing curved steel-box ramp bridges. In the paper, for the realistic assessment of safety and residual load carrying-capacity of deteriorated and/or damaged curved steel-box bridges, an interactive non-linear limit state model is formulated based on the von Mises's combined stress yield criterion. It is demonstrated that the proposed model is effective for the assessment of reliability-based safety and the evaluation of residual load carrying-capacity of curved steel-box bridges. In addition, this study comparatively shows the applicability of various reliability analysis methods, and suggests a practical and effective one to be used in practice.

  • PDF

Maintenance, Repair and Rehabilitation (MR&R) Practice for Concrete Bridge Decks

  • Hong, Tae Hoon
    • Architectural research
    • /
    • v.7 no.2
    • /
    • pp.81-89
    • /
    • 2005
  • Over the years, existing bridges have had various degrees of maintenance to extend the service life. As the existing bridges continue to deteriorate, however, each Department of Transportation (DOT) of the United States of America faces increasing demands on the limited funds available for bridge maintenance. Therefore, it is very important for State Department of Transportations to establish Maintenance, Repair, and Rehabilitation (MR&R) strategies for bridge structures such that funds get allocated for appropriate maintenance over the service life. This paper identifies the state-of-art and the state-of-practice of MR&R actions and the use of MR&R strategies in concrete bridge decks. In addition, a questionnaire survey was conducted to identify the type and timing for MR&R actions as well as existing MR&R strategies taken in concrete bridge deck by each DOT. This paper also presents the results of the survey.

Research and practice of health monitoring for long-span bridges in the mainland of China

  • Li, Hui;Ou, Jinping;Zhang, Xigang;Pei, Minshan;Li, Na
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.555-576
    • /
    • 2015
  • The large number of long-span bridges constructed in China motivates the applications of structural health monitoring (SHM) technology. Many bridges have been equipped with sophisticated SHM systems in the mainland of China and in Hong Kong of China. Recently, SHM technology has been extended to field test systems. In this view, SHM can serve as a tool to develop the methods of life-cycle performance design, evaluation, maintenance and management of bridges; to develop new structural analysis methods through validation and feedback from SHM results; and to understand the behavior of bridges under natural and man-made disasters, rapidly assess the damage and loss of structures over large regions after disasters, e.g., earthquake, typhoon, flood, etc. It is hoped that combining analytical methods, numerical simulation, small-scale tests and accelerated durability tests with SHM could become the main engine driving the development of bridge engineering. This paper demonstrates the above viewpoint.

Dynamic Behaviors of Highway Bridges under Multi-Traffic Loads (차량통행특성에 따른 도로교의 동적거동변화)

  • 김상효;이상호;윤성호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.04a
    • /
    • pp.185-191
    • /
    • 1997
  • The study presents the linear dynamic analysis of bridges under vehicular movement to examine the performance characteristics due to the various structural and loading conditions. The road surface roughness and bridge-vehicle interactions are considered. The road surface profiles for the approaching roadway and bridge decks are generated from power spectral density functions for different road roughness conditions. A new filtering method using the wheel trace is proposed to obtain the more rational bridge-vehicle interactions from the randomly generated road surface. The dynamic responses of various bridges designed according to current design practice are examined, in which important structural parameters(such as span length, girder spacing, etc.) are considering systematically. In addition, the traffic conditions of multi-truck traveling either consecutively on the same lane or side-by-side on the adjacent lanes are also evaluated.

  • PDF

Characteristics of Live Load Effects on Bridges (하중효과를 고려한 차량하중 특성분석)

  • 김상효;박홍석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.04a
    • /
    • pp.126-133
    • /
    • 1992
  • The structural soundness of bridges is mainly damaged by overloaded heavy vehicles. The increasing volumes of overloaded heavy vehicles has been indicated as serious state. As results several countries have revised their bridge load codes. However, because of variety of truck types and their weights it is difficult to develop rational standard truck loads. In addition the common practice that only one design configuration of standard truck is adopted to design variety of bridges causes further difficulties. The objective of the study is to investigate the statistical characteristics of vehicle loadings based on survey data col looted, in which some major factors, such as vehicle configurations, vehicle freights, traffic modes, etc. are incorporated.

  • PDF

Fiber-reinforced composite resin bridges: an alternative method to treat root-fractured teeth

  • Heo, Gun;Lee, Eun-Hye;Kim, Jin-Woo;Cho, Kyung-Mo;Park, Se-Hee
    • Restorative Dentistry and Endodontics
    • /
    • v.45 no.1
    • /
    • pp.8.1-8.9
    • /
    • 2020
  • The replacement of missing teeth, especially in the anterior region, is an essential part of dental practice. Fiber-reinforced composite resin bridges are a conservative alternative to conventional fixed dental prostheses or implants. It is a minimally invasive, reversible technique that can be completed in a single visit. The two cases presented herein exemplify the treatment of root-fractured anterior teeth with a natural pontic immediately after extraction.