• Title/Summary/Keyword: Bridges Management

Search Result 321, Processing Time 0.02 seconds

Lateral Load Distribution Estimation of a PSC Girder Bridge from Dynamic Loading Test (동적재하시험을 통한 PSC 거더교의 횡분배 측정)

  • Kim, Sung-Wan;Cheung, Jin-Hwan;Kim, Seong-Do;Park, Jae-Bong;Lee, Myoung-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.3
    • /
    • pp.60-68
    • /
    • 2017
  • Since the bridge is the main facility of the road that is the core of the civil infrastructure, the bridge is constructed to ensure stability and serviceability during the traffic use. In order to secure the safety of bridges, evaluating the integrity of bridges at present is an important task in the maintenance work of bridges. In general, to evaluate the load carrying capacity of bridges, it is possible to confirm the superimposed behavior and symmetric behavior of bridges by estimating the lateral load distribution factor of the bridges through vehicle loading tests. However, in order to measure the lateral load distribution factor of a commonly used bridge, a static loading test is performed. There is a difficulty in traffic control. Therefore, in this study, the static displacement component of the bridge measured in the dynamic loading test and the ambient vibration test was extracted by using empirical mode decomposition technique. The lateral load distribution was estimated using the extracted static displacement component and compared with the lateral load distribution factor measured in the static loading test.

VR-based education system for inspection of concrete bridges

  • Miyamoto, Ayaho;Konno, Masa-Aki;Rissanen, Tommi
    • Computers and Concrete
    • /
    • v.3 no.1
    • /
    • pp.29-42
    • /
    • 2006
  • In this study, a novel education system for inspection of concrete bridges is presented. The new education approach uses virtual reality (VR) and three-dimensional computer graphics (3DCG) in training engineers to become bridge inspection specialists. The slow time-dependent deterioration of concrete bridges can be reproduced on the computer screen in any chosen time frame, thus providing the trainees with illustrative and educative insight into the deterioration problem. In the proposed VR/3DCG approach a three-dimensional model of concrete bridge, including surfaces, viewpoints and walkthrough paths is created. With the help of this virtual bridge model, an experienced bridge inspection specialist teaches the different deterioration phenomena of concrete bridges to the trainees. The new system was tested, and the inspection results from the case bridge showed that in comparison with the traditional Japanese bridge inspection education system, the new system gives better results. In addition to the improvement of quality of bridge inspections, the new VR/3DCG system-based education brings along some other, more intangible benefits.

The Study on Shape Behavior of Nielsen Arch Bridge Considering Rise Ratio (라이즈비를 고려한 닐센아치교의 형상 거동에 관한 연구)

  • Park, Soon-Eung;Park, Moon-Ho;Kim, Jin-Kyu;Roh, Woo-Hyuk;Cho, Seong-Uk;Ryu, Ji-Young
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.13 no.3
    • /
    • pp.161-168
    • /
    • 2010
  • Recently, bridges have been momenttous as not only regarding function but also concerning aesthetics. However, when beauty is considered in the bridge, it is also essential that stability and economics be considered. Besides, when considering stability, an arch bridge is one of the most stable structures. The most important element is a rise ratio when regarding beauty and economics of arch bridges. The effect of dead load and DB24 load have been considered to decide proper rise ratio. Therefore, in this study, examined the value of moment, displacement and member forces, in the variation of the rise ratio of arch bridges. The most optimum shape of Nielsen arch bridges has determined by analyzing member forces, moments and displacement with parameters of rise ratio and angle of vertical members. By comparison between values, the hanger types have been also considered to derive the optimum shape of Nielsen arch bridge.

  • PDF

Analysis of the effect in the city due to the bridges incidents in Songdo International City (송도국제도시 연결도로의 유고상황 발생에 따른 신도시 내부 영향 분석)

  • Hong, Ki-Man;Kim, Tea-gyun
    • Journal of Urban Science
    • /
    • v.10 no.1
    • /
    • pp.49-60
    • /
    • 2021
  • The purpose of this study is to analysis the impact on the inside of the new city when an incidents occurs on the Songdo International City connecting road, which has a limited access. The analysis data used KTDB's O/D and network data of the Seoul metropolitan area. In addition, the scenario composition applied a method of reducing the number of lanes on the road according to the situation of incidents, targeting bridges advancing from Songdo International City to the outside in the morning peak hours. The analysis method analyzed the traffic volume, total travel time, total travel kilometer, and route change in the new city based on the results of the traffic allocation model. As a result of the analysis, the range of influence was shown to two types. First, of the seven bridges, Aam 3, Aam 2, and Aam 1 were analyzed to have an impact only in some areas of the northwestern part of the new city. On the other hand, the remaining bridges were analyzed to affect the new city as a whole. The analysis results of this study are expected to be used as basic data to establish the scope of internal road network management when similar cases occur in the future.

Cointegration based modeling and anomaly detection approaches using monitoring data of a suspension bridge

  • Ziyuan Fan;Qiao Huang;Yuan Ren;Qiaowei Ye;Weijie Chang;Yichao Wang
    • Smart Structures and Systems
    • /
    • v.31 no.2
    • /
    • pp.183-197
    • /
    • 2023
  • For long-span bridges with a structural health monitoring (SHM) system, environmental temperature-driven responses are proved to be a main component in measurements. However, anomalous structural behavior may be hidden incomplicated recorded data. In order to receive reliable assessment of structural performance, it is important to study therelationship between temperature and monitoring data. This paper presents an application of the cointegration based methodology to detect anomalies that may be masked by temperature effects and then forecast the temperature-induced deflection (TID) of long-span suspension bridges. Firstly, temperature effects on girder deflection are analyzed with fieldmeasured data of a suspension bridge. Subsequently, the cointegration testing procedure is conducted. A threshold-based anomaly detection framework that eliminates the influence of environmental temperature is also proposed. The cointegrated residual series is extracted as the index to monitor anomaly events in bridges. Then, wavelet separation method is used to obtain TIDs from recorded data. Combining cointegration theory with autoregressive moving average (ARMA) model, TIDs for longspan bridges are modeled and forecasted. Finally, in-situ measurements of Xihoumen Bridge are adopted as an example to demonstrate the effectiveness of the cointegration based approach. In conclusion, the proposed method is practical for actual structures which ensures the efficient management and maintenance based on monitoring data.

Feasibility Analysis for Introducing Automation for Bridge Inspection (교량점검 자동화 장비도입에 대한 타당성 분석)

  • Lee, Tai-Sik;Lee, Jong-Seh;Koo, Ja-Kyung;Hwang, In-Ho
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2006.11a
    • /
    • pp.680-685
    • /
    • 2006
  • Bridges are an integral part of Transportation that is always open to traffic.To effectively manage bridges today, more needs to be done to assess the day-to-day condition and behavior of bridges, and the deterioration rates of their components, so that efficient and proactive measures can be taken. Conventional methods consumemore time and they lack flexibility to reach all locations in high convoluted structures which most bridges offer. Instead, this work uses a new concept of robot, termed as Bridge inspecting robot, which, as its name suggests, possesses superior ability to flex, reach, and approach all points on the bridge. This study also provides economical feasibility model for the same and a comparison with existing bridge inspection and automated inspection work. Finally, we have uncovered few issues and did not analyze some information because of limitation to data.

  • PDF

Vehicular Collision Risk Assessment on the Highway Bridges in South Korea (국내 고속도로 교량의 차량 충돌 위험도 평가)

  • Min, Geun-Hyung;Kim, Woo-Seok;Cho, Jun-Sang;Gil, Heung-Bae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.5
    • /
    • pp.9-17
    • /
    • 2016
  • Vehicle collision to bridges has been known as one of the causes of bridge collapse, and the emergency plans and disaster management has been recently emphasized to secure public safety. This study conducted risk assessment of vehicular collision to bridges for highway bridges in Korea. Risk assessment consists of three steps; preliminary risk analysis(PRA), simplified risk analysis(SRA) and detailed risk analysis(DRA). The PRA firstly screens out the possibility of occurrence of the event. The SRA identifies influencial factors to risk of the event and evaluates risk scores to determine risk levels and necessity of DRA that investigates the risk of the bridge in detail. This study focuses on the methodology of the risk assessment, especially the SRA, and the stratification methods which evaluate risk levels of vehicular collision. The analysis results were compared to the reported vehicular collision accidents. The proposed method can be utilized in similar disaster management area.

Development Strategies and Feasibility Evaluation of Maintenance Operation System for Railway Bridge Based on Ubiquitous-BIM Technology (Ubiquitous-BIM 기술 기반의 철도교량 유지관리 운영체계 구축 전략 및 타당성 평가)

  • Moon, Hyoun-Seok;Kim, Hyeon-Seung;Kang, Leen-Seok
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.5
    • /
    • pp.459-466
    • /
    • 2012
  • Due to the issues such as omission of data, document based management, maintenance based on measurement data and wire-based network, it is difficult existing maintenance system for railway bridges to act to diverse characteristics of site and environmental changes in real time. With these reasons, there are many constraints in establishing active maintenance strategies for railway bridges. To solve these issues, this study suggests an integrated maintenance business model based on practical utilization and information management based on BIM technology to build a smart maintenance operation system based on ubiquitous computing for railway bridges. To secure its development and practical applications, a quantitative evaluation by questionnaire analysis was performed. Therefore, it is expected that the suggested model will be utilized as a framework model in order to build the smart maintenance operation system from collection of maintenance data to action for railway bridges.

Performance of passive and active MTMDs in seismic response of Ahvaz cable-stayed bridge

  • Zahrai, Seyed Mehdi;Froozanfar, Mohammad
    • Smart Structures and Systems
    • /
    • v.23 no.5
    • /
    • pp.449-466
    • /
    • 2019
  • Cable-stayed bridges are attractive due to their beauty, reducing material consumption, less harm to the environment and so on, in comparison with other kinds of bridges. As a massive structure with long period and low damping (0.3 to 2%) under many dynamic loads, these bridges are susceptible to fatigue, serviceability disorder, damage or even collapse. Tuned Mass Damper (TMD) is a suitable controlling system to reduce the vibrations and prevent the threats in such bridges. In this paper, Multi Tuned Mass Damper (MTMD) system is added to the Ahvaz cable stayed Bridge in Iran, to reduce its seismic vibrations. First, the bridge is modeled in SAP2000 followed with result verification. Dead and live loads and the moving loads have been assigned to the bridge. Then the finite element model is developed in OpenSees, with the goal of running a nonlinear time-history analysis. Three far-field and three near-field earthquake records are imposed to the model after scaling to the PGA of 0.25 g, 0.4 g, 0.55 g and 0.7 g. Two MTMD systems, passive and active, with the number of TMDs from 1 to 8, are placed in specific points of the main span of bridge, adding a total mass ratio of 1 to 10% to the bridge. The parameters of the TMDs are optimized using Genetic Algorithm (GA). Also, the optimum force for active control is achieved by Fuzzy Logic Control (FLC). The results showed that the maximum displacement of the center of the bridge main span reduced 33% and 48% respectively by adding passive and active MTMD systems. The RMS of displacement reduced 37% and 47%, the velocity 36% and 42% and also the base shear in pylons, 27% and 47%, respectively by adding passive and active systems, in the best cases.

A Decision Support Methodology for Remediation Planning of Concrete Bridges

  • Rashidi, Maria;Lemass, Brett
    • Journal of Construction Engineering and Project Management
    • /
    • v.1 no.2
    • /
    • pp.1-10
    • /
    • 2011
  • Bridges are critical and valuable components in any road and rail transportation network. Therefore bridge remediation has always been a top priority for asset managers and engineers, but identifying the nature of true defect deterioration and associated remediation treatments remains a complex task. Nowadays Decision Support Systems (DSS) are widely used to assist decision makers across an extensive spectrum of unstructured decision environments. The main objective of this research is to develop a requirements-driven methodology for bridge monitoring and maintenance which has the ability to assess the bridge condition and find the best remediation treatments using Simple Multi Attribute Rating Technique (SMART); with the aim of maintaining a bridge within acceptable limits of safety, serviceability and sustainability.