• Title/Summary/Keyword: Bridge pier

Search Result 485, Processing Time 0.023 seconds

Seismic Performance and Retrofit of Reinforced Concrete Two-Column Piers Subjected to Bi-directional Cyclic Loadings (이축반복하중을 받는 2주형 철근콘크리트 교각의 내진성능과 보강)

  • Chung, Young-Soo;Park, Chang-Kyu;Lee, Ho-Yul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.3 s.49
    • /
    • pp.47-55
    • /
    • 2006
  • Seismic performance and retrofit of reinforced concrete (RC) two-column piers widely used at roadway bridges in Korea was experimentally evaluated. Ten two-column piers that were 400 mm in diameter and 2,000 mm in height were constructed. These piers were subjected to hi-directional cyclic loadings under a constant axial load of $0.1f_{ck}A_g$. Test parameters were the confinement steel ratio, loading pattern, lap splice of longitudinal reinforcing bars, and retrofitting method. Specimens with lap-spliced longitudinal bars were retrofitted with steel jacket, pre-stressing steel wire, and steel band. Test result showed that while the specimens subjected to bi-directional lateral cyclic loadings which consisted of two main amplitudes in the transverse axis and two sub amplitudes in longitudinal axis, referred to as a T-series cyclic loadings, exhibited plastic hinges both at the top and bottom parts of the column, the specimens subjected to bi-directional lateral cyclic loadings in an opposite way, referred to as a L-series cyclic loadings, exhibited a plastic hinge only at the bottom of the column. The displacement ductility of the specimen under the T-series loadings was bigger than that of the specimen under the L-series loadings. Specimen retrofitted with pre-stressing steel wires exhibited poor ductility due to the upward shift of the plastic hinge region because of over-reinforcement, but specimens retrofitted with steel jacket and steel band showed the required displacement ductility. Steel band can be an effective retrofitting scheme to improve the seimsic performance of RC bridge piers, considering its practical construction.

Analysis of the material transportation under water-depth variation scenario at pier-bridge of Busan New-port (부산신항 연결잔교부의 해저수심변화 시나리오에 의한 물질수송량 해석)

  • Lee, Young-Bok;Ryu, Seung-Woo;Ryu, Cheong-Ro;Tawaret, Attapon;Yoon, Han-Sam
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2008.05a
    • /
    • pp.61-67
    • /
    • 2008
  • This study analyzes the characteristics of material transportation between Busan new-port and Nakdong river estuary. Measurements of water temperate, salinity, turbidity, and tide is also analyzed to determine the characteristics of sea water and described the tidal current between two regions. For the purpose of indicating characteristics of tidal current numerical modeling is used. From the observed results, the total volume transport of sea water calculations revealed $184.71m^3/sec$ and residual volume transport was $(+)59.74m^3/sec$ during the 1st field measurement, and the total volume transport was $331.15m^3/sec$ and residual volume transport was $(-)28.88m^3/sec$ during the 2nd. The numerical simulation for three different topography cases are calculated. The results are summarized as follows: 1) The volume of material transportation about $0.7\sim18.4%$ is decreased as the depth of Busan new-port decrease (10 m). 2) The volume of material transportation about $3.5\sim21.9%$ is increased, as channel(water depth is 5 m) constructed to the Nakdong river estuary direction.

  • PDF

The Inclination Characteristics of PSC BOX in FCM Bridge Construction Method (FCM 교량 가설 공법에서 주두부의 기울음 특성)

  • Hyun-Euk Kang;Wan-Shin Park;Young-Il Jang;Sun-Woo Kim;Hyun-Do Yun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.3
    • /
    • pp.12-20
    • /
    • 2023
  • This study presents basic data on how to secure stability by analyzing the change in tensile force of steel rod and the inclination characteristics of PSC BOX in the "Temporary fixation system using internal prestressing tendon", which is mainly applied to construction of superstructures by FCM. To date, it has been difficult to confirm the changes in tension force of the steel rod and the inclination of the PSC BOX because the steel rod was installed vertically inside the pier and the PSC BOX. Therefore, measurement of the change in length of the steel rod and the displacement of PSC BOX were performed using a micro-measured FBG sensor. Comparisons of the calculated tensile force and the residual tensile force of the steel rod revealed that the safety factor decreased in all bridges. The cause was mainly identified to be the loss of tensile force in fixation~1segment, and countermeasures are suggested. The analysis of the inclination characteristics showed that the inclination increased with the segment progresses even in bridges with sufficient safety factor, and the difference before and after the segment was confirmed. In addition, the increase in inclination was related to the loss of tension force in the steel rod, and the stress on the opposite sides of the inclination was further reduced. It is believed that upward tensile force is generated in the steel rod on the opposite side of the inclined side due to the unbalanced moment, causing the difference in stress of the steel rod between the two sides.

Evaluation of Flexural Ductility of Negative Moment Region of I-Girder with High Strength Steel (고강도 강재 적용 I-거더의 부모멘트부 휨연성 평가)

  • Joo, Hyunsung;Moon, Jiho;Choi, Byung-Ho;Lee, Hak-Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6A
    • /
    • pp.513-523
    • /
    • 2010
  • For continuous I-girder bridges, a large negative bending moment is generated near pier region so that plastic hinge is first formed at this point. Then, the bending moment is redistributed when the I-girder has enough flexural ductility (or rotational capacity). However, for I-girder with high strength steel, it is known that the flexural ductility is considerably decreased by increasing the yield strength of material. Thus, it is necessary to conduct a study for guaranteeing proper flexural ductility of I-girder with high-strength steel. In this study, the evaluation of flexural ductility of negative moment region of I-girder with high strength steel where yield stress of steel is 680 MPa is presented based on the results of finite element analysis and experiment. From the results, it is found that the flexural ductility of the I-girder is significantly reduced due to the increase of elastic deformation and the decrease of plastic deformation ability of the material when the yield strength increases. In this study, the method to improve the flexural ductility of I-girder with high strength steel is proposed by an unequal installation of cross beam and an optimal position of cross beam is also suggested. Finally, the effects of the unequal installation of cross beam on the flexural ductility are discussed based on the experimental results.

Stress Variation Characteristics of Temporary Fixed Steel Rod in FCM Bridge Construction Method (FCM 교량 가설 공법에서 임시 고정 강봉의 응력 변화 특성 )

  • Hyun-Euk Kang;Wan-Shin Park;Young-Il Jang;Sun-Woo Kim;Hyun-Do Yun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.3
    • /
    • pp.21-29
    • /
    • 2023
  • In this study, the stress characteristics of temporary fixed steel rods were analyzed in the "temporary fixing system using internal prestressing tension", which is mainly applied to the construction of superstructures by FCM. It was difficult to confirm the changes in initial tensile force in this system because the steel rod was internally connected to the pier and the PSC BOX. Therefore, measurement was performed before and after the completion of each segment using an FBG sensor to measure the change in the micro length of the steel rod. The results of the analysis showed that 75% to 90% of the maximum vertical contraction of the steel rod that occurred until the completion of the cantilever segment occurred in the fixing ~ 1segment, and the maximum loss of initial prestressing force was 39%. Such excessive loss of tension force to 1 segment means that tension is needed to improve the precision of construction during the fixation, and re-tension is needed to secure stability for conduction of cantilever segments after the completion of 1segment. In the 2 ~ last segment, the stress of the steel rod decreased gradually, and in the summer, the decrease in stress tended to partially recover due to the increase in the length of the steel rod corresponding to the increase in the vertical volume of PSC BOX. The dominant factor in the stress change in 2~ last segment in this phenomenon is judged to be the change in the length of the steel rod according to the temperature. Unlike the change in length, the relaxation was 1.2-2.7%, which was mostly offset by the opposite stress corresponding to the temperature stress. Therefore, a plan was proposed to improve the internal stress, such as adjusting the fixation time.