• Title/Summary/Keyword: Bridge erection method

Search Result 21, Processing Time 0.028 seconds

The Erection Method of Starter Segment for Cable Stayed Bridge using Asymmetric System and Cable (케이블과 비대칭 구조를 이용한 사장교 주두부 시공 방법)

  • Cho, Seo-Kyung;Yoon, Tae-Seob;Jeong, Seung-Wook;Lee, Jea-Chan;Eo, Jun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.1031-1038
    • /
    • 2002
  • In this paper the erection method of the Seohae Bridge starter is presented. The erection method of starter for cable stayed bridge was changed from conventional bracket supported erection to heavy lifting supported directly by stays. There was the need to reduce the erection time drastically. The cost saving was obtained as a bonus.

  • PDF

Erection Method for Marine Section of Double Deck Warren Truss in Young Jong Grand Bridge (영종대교 복층 Warren Truss 해상구간 가설공법)

  • Kim Jeong-Woong;Seo Jea-Hwa;Yang Mu-Seok;Yuk Il -Dong
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.232-239
    • /
    • 2001
  • Young Jong Grand Bridge is approach traffic road of New Inchon International Airport which covers hub airport function in northeast asia. The total span length of this bridge is $4,420{\cal}m$ and this main bridge type is, the first in the world, Double Deck Self Anchored Suspension Bridge, designed as double deck systems to be arranged by road and railroad. Approach bridges to be connected with main span also are composed double deck steel truss and steel box girder to consider a continuity with this span. Our company erected $1,375{\cal}m$(about 60,000tons) of double deck steel truss bridge type which is composed by 6 traffic lane on upper deck and 4 traffic lane and Double track railroad on lower deck. The original installation method of this bridge was planed to install about 75 meters bridge blocks to use floating crane, after temporary bent was constructed between permanent piers. But this method which had to construct many temporary bents in the sea had the matter that construction periods can become lengthen and construction cost can be risen. To overcome the uncertainty to ensure high qualify of bridge and economic project execution, our company developed new bridge erection method to assure both quality control and economic construction work. The new erection method which was developed by us was one that could transport and install long bridge block, $120{\cal}m$ unit at a time and that temporary bent was not required. We hope that this paper is used as technical data which will erect bridge in the western sea and others marine region.

  • PDF

A Structural Analysis Model for the Initial Configuration of a Suspension Bridge Considering the Erection Method of Stiffening Girders (보강형의 시공방법을 고려한 타정식 현수교의 초기형상해석 모델)

  • Ko, Seong Seok;Kang, Sung Hoo;Park, Sun Joon;Jung, Jae Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4A
    • /
    • pp.337-346
    • /
    • 2009
  • To determine the initial configuration of the suspension bridge appropriate idealization model and analysis procedure are proposed as considering the boundary and loading conditions of stiffening girder during the erection. The construction stages of a suspension bridge are divided into two steps which are the first stage of the erection and the second stage of the completion in terms of the erection time of stiffening girders, and depending upon such an erection step the initial configuration analysis is classified the first configuration analysis and the revision analysis of the second configuration. The boundary and loading conditions and the analysis procedures for each stage are suggested and the results are verified by comparing with existing data. The results show that the proposed method provides better solution compared to the results using existing method.

Development of Sag and Tension Sensitivity Estimation Method for Configuration Control under PPWS Erection in a Suspension Bridge (현수교 PPWS 가설중 형상관리를 위한 PPWS 새그 및 장력민감도 산정법 개발)

  • Jeong, Woon;Seo, Ju Won;Lee, Won Pyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5A
    • /
    • pp.255-266
    • /
    • 2012
  • Main cable of a suspension bridge is the important member which shows the overall structure integrity at bridge completion. Configuration of main cable is a free hanging state at cable erection completion and is different from that at bridge completion supporting the dead loads such as hanger, girder, and so on. Accordingly, the configuration control under cable erection is considerably significant because the configuration at cable erection completion has direct influence on that at bridge completion. That is performed by sag adjustments at center, side span and tension adjustments at anchor span. The former needs the sag sensitivity which represents the control quantity of strand length corresponding to that of sag. The latter requires the tension sensitivity which shows the change of strand tension according to that of strand temperature. In this study, the fundamental equations of cable were derived with the assumption of either catenary or parabola shape, the differential-related equations using chain rule on horizontal tension were drawn from those and finally the estimation methods of the sag / tension sensitivity were proposed from both those. The nonlinear numerical analysis flow charts of sag sensitivity based on the catenary equations were proposed and the sag sensitivities grounded on the differential-related equations were compared with the results using them for various parameters of sag change. Also, considering the combinations of sag change parameters, the calculation method of the final variation for the cable sag was suggested. For the real suspension bridge under construction with PPWS method, the sag/tension sensitivity were estimated considering the construction conditions like the change of PPWS length, PPWS temperature, bridge span, etc.. We hope that this study will be a systematic guideline for the configuration control under main cable erection and improved highly by field verification in the real bridge site.

Wind Tunnel Aeroelastic Studies of Steel Cable-stayed Bridge with Wind Cable and Temporary Support (강 사장교 가설 중 임시 제진방법에 대한 풍동실험 연구)

  • Cho, Jae Young;Shim, Jong Han;Lee, Hak Eun;Kwon, O Whon
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.1
    • /
    • pp.33-45
    • /
    • 2006
  • Cable-stayed bridges are more inherently vulnerable to wind during the erection stages than when they are already being used. Even if a bridge that is already being used is aerodynamically stable, it is prone to having aerodynamic instabilities within the design wind speed during construction. Therefore, when the bridge's designers deliberate on the method they will use in constructing the bridge, they must likewise come up with a suitable plan to ensure the stability of the bridge during its erection (e.g., conducting a wind-tunnel investigation). This paper describes the aeroelastic full-bridge model tests that were conducted to investigate the aerodynamic behavior of the bridge during erection, with emphasis on aerodynamic stability and the mitigation of the buffeting response through temporary stabilization. The aerodynamic performance of a cable -stayed bridge with a main span of 50 m was studied in its completed stage and in two erection stages, corresponding 50% and 90% completion, respectively. In the 50% erection stage tests, a balanced cantilever configuration, with wind cable and temporary support at the tower, was conducted. The system that was determined to be most effective in reducing wind action on the bridge during construction was proposed in the paper, based on the results of the comparative study that was conducted.

Unbalanced wind buffeting effects on bridges during double cantilever erection stages

  • Mendes, Pedro A.;Branco, Fernando A.
    • Wind and Structures
    • /
    • v.4 no.1
    • /
    • pp.45-62
    • /
    • 2001
  • This paper is focused on the torsional effects that are induced on bridge piers by unbalanced wind buffeting on the deck during double cantilever erection stages. The case of decks with variable cross section is considered in particular as this characteristic is typical of most frame bridges that are built by the cantilever method. The procedure outlined in the paper is basically an application of the method that Dyrbye and Hansen (1996) have illustrated for decks with constant cross section. This format was chosen because it is suitable for design purposes and may easily be implemented in structural codes. As a complement, the correspondence with the format that is adopted in the Canadian code (NBCC 1990) for the gust factor is established, which might be useful to bridge designers used to the North-American approach to the gust effects on structures. Only alongwind turbulence and horizontal movements of the deck are considered. The combination of torsional and bending effects is also discussed and it is illustrated with an example of application.

Investigation on flutter stability of three-tower suspension bridges under skew wind

  • Xinjun Zhang;Xuan-Rui Pan;Yuhan Leng;Bingze Chen
    • Wind and Structures
    • /
    • v.38 no.1
    • /
    • pp.43-58
    • /
    • 2024
  • To ensure the flutter stability of three-tower suspension bridges under skew wind, by using the computational procedure of 3D refined flutter analysis of long-span bridges under skew wind, in which structural nonlinearity, the static wind action(also known as the aerostatic effect) and the full-mode coupling effect etc., are fully considered, the flutter stability of a three-tower suspension bridge-the Taizhou Bridge over the Yangtze River in completion and during the deck erection is numerically investigated under the constant uniform skew wind, and the influences of skew wind and aerostatic effects on the flutter stability of the bridge under the service and construction conditions are assessed. The results show that the flutter critical wind speeds of three-tower suspension bridge under service and construction conditions fluctuate with the increase of wind yaw angle instead of a monotonous cosine rule as the decomposition method proposed, and reach the minimum mostly in the case of skew wind. Both the skew wind and aerostatic effects significantly reduce the flutter stability of three-tower suspension bridge under the service and construction conditions, and the combined skew wind and aerostatic effects further deteriorate the flutter stability. Both the skew wind and aerostatic effects do not change the evolution of flutter stability of the bridge during the deck erection, and compared to the service condition, they lead to a greater decrease of flutter critical wind speed of the bridge during deck erection, and the influence of the combined skew wind and aerostatic effects is more prominent. Therefore, the skew wind and aerostatic effects must be considered accurately in the flutter analysis of three-tower suspension bridges.

Concrete arch bridges built by lattice cantilevers

  • Granata, Michele Fabio;Margiotta, Piercarlo;Recupero, Antonino;Arici, Marcello
    • Structural Engineering and Mechanics
    • /
    • v.45 no.5
    • /
    • pp.703-722
    • /
    • 2013
  • In this paper a study about concrete arch bridges built by lattice cantilevers is presented. Lattice cantilevers are partial structures composed of deck, arch, piers and provisional steel diagonals, organized as reticular cantilever girders, in order to build arch bridges without the use of centrings, supports or temporary towers. Characteristics of this construction methodology with its variants are explained together with their implications in the erection sequence. Partial elastic scheme method is implemented in order to find initial forces of temporary cables and a forward analysis is carried out to follow the actual sequence of construction, by extending a procedure already applied to concrete cable-stayed bridges and to arches built by the classical suspended cantilever method. A numerical application on a case-study of a concrete arch bridge is performed together with a comparison between different methodologies followed for its construction sequence. Differences between erection by lattice cantilevers and cable-stayed cantilevers, are discussed. Results can be useful for designers in conceptual design of concrete arch bridges.

Risk Analysis of Suspension Bridge by a Linear Adaptive Weighted Response Surface Method (선형 적응적 가중 응답면기법에 의한 현수교의 위험도 분석)

  • Cho, Tae Jun;Kim, Lee Hyeon;Cho, Hyo Nam
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.1
    • /
    • pp.93-104
    • /
    • 2008
  • study deals with the reliability assesment for the 5-year phases of a suspension bridge construction in Korea. The main objectives of this study are; (1) the evaluation of the reliability of a suspension bridge by considering an ultimate limit state for the fracture of main cable wires, (2) the determination of the critical phases among 28 construction stages for the deck erection, and (3) the evaluation of the reliability of the limit state for the erection control during construction stages. The research and the design of the suspension bridge have been focused on the state of construction mainly based on empirical data. Based on the recent survey of the distribution of accidents in Korean railways, over 80% of the accidents related to the uncertainties in human error, planning, design, materials and loads during construction have ben reported before the completion of construction. While many researches have evaluated the safety of bridges, the uncertainties in the construction phases have not been well treated in a guidelines or a specifications. An improved adaptive response surface method is used for the risk assessment in the construction phases of the target suspension bridge.