• 제목/요약/키워드: Bridge effect

검색결과 1,550건 처리시간 0.029초

Seismic response of a monorail bridge incorporating train-bridge interaction

  • Kim, Chul-Woo;Kawatani, Mitsuo;Lee, Chang-Hun;Nishimura, Nobuo
    • Structural Engineering and Mechanics
    • /
    • 제26권2호
    • /
    • pp.111-126
    • /
    • 2007
  • Dynamic responses of the bridge for a straddle-type monorail subjected to the ground motion of high probability to occur are investigated by means of a three-dimensional traffic-induced vibration analysis to clarify the effect of a train's dynamic system on seismic responses of a monorail bridge. A 15DOFs model is assumed for a car in the monorail train. The validity of developed equations of motion for a monorail train-bridge interaction system is verified by comparison with the field-test data. The inertia effect due to a ground motion is combined with the monorail train-bridge interaction system to investigate the seismic response of the monorail bridge under a moving train. An interesting result is that the dynamic system of the train on monorail bridges can act as a damper during earthquakes. The observation of numerical results also points out that the damper effect due to the dynamic system of the monorail train tends to decrease with increasing speed of the train.

Determination of the restoration effect on the structural behavior of masonry arch bridges

  • Altunisik, A.C.;Bayraktar, A.;Genc, A.F.
    • Smart Structures and Systems
    • /
    • 제16권1호
    • /
    • pp.101-139
    • /
    • 2015
  • In this paper, it is aimed to investigate the restoration effect on the structural behavior of masonry arch bridges. Dandalaz masonry arch bridge located on the 4km east of Karacasu town of Aydin, Turkey is selected as a numerical example. The construction year of the bridge is not fully known, but the bridge is dated back to 15th century. Considering the current situation, it can be easily seen that the structural elements such as arch, side walls and timber blocks are heavily damaged and the bridge is unserviceable. Firstly finite element model of the bridge is constituted to reflect the current situation (before restoration) using building survey drawings. After, restoration project is explained and finite element model is reconstituted (after restoration). The structural responses of the bridge are obtained before and after restoration under dead load, live load and dynamic earthquake loads. For both conditions, maximum displacements, maximum-minimum principal stresses and maximum-minimum elastic strains are given with detail using contours diagrams and compared with each other to determine the restoration effect. From the study, it can be seen that the maximum internal forces are consisted under dynamic loads before and after restoration. Also, the restoration projects and studies have important and positive effects on the structural response of the bridge to transfer these structures to future.

GFS로 성능향상된 교량 바닥판의 정적 보강효과 (A Experimental Study on the Static Strengthen Effect of Bridge Deck Strengthened with GFS)

  • 심종성;오홍섭;류승무;박성재
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.739-744
    • /
    • 2001
  • The concrete bridge deck is quitely required to be replaced or strengthened due to decreasing load carrying capacity. In this study, to increase load capacity of the reinforced concrete slab, bridge deck is reinforced with the glass fiber sheets. they are examined on the strengthen effect and the static behavior, This paper considers relation of load-displacement and strain-distance. The static behavior of the slab strengthened is represented to maximum load. Owing to that, they are examined on increasing load carrying capacity of reinforced bridge deck and strengthen effect about on the crack.

  • PDF

Aerostatic load on the deck of cable-stayed bridge in erection stage under skew wind

  • Li, Shaopeng;Li, Mingshui;Zeng, Jiadong;Liao, Haili
    • Wind and Structures
    • /
    • 제22권1호
    • /
    • pp.43-63
    • /
    • 2016
  • In conventional buffeting theory, it is assumed that the aerostatic coefficients along a bridge deck follow the strip assumption. The validity of this assumption is suspect for a cable-stayed bridge in the construction stages, due to the effect of significant aerodynamic interference from the pylon. This situation may be aggravated in skew winds. Therefore, the most adverse buffeting usually occurs when the wind is not normal to bridge axis, which indicates the invalidity of the traditional "cosine rule". In order to refine the studies of static wind load on the deck of cable-stayed bridge under skew wind during its most adverse construction stage, a full bridge 'aero-stiff' model technique was used to identify the aerostatic loads on each deck segment, in smooth oncoming flow, with various yaw angles. The results show that the shelter effect of the pylon may not be ignored, and can amplify the aerostatic loading on the bridge deck under skew winds ($10^{\circ}-30^{\circ}$) with certain wind attack angles, and consequently results in the "cosine rule" becoming invalid for the buffeting estimation of cable-stayed bridge during erection for these wind directions.

현수교 초기장력이 고유주기 산정에 미치는 영향 (Effect of Initial Tension on Natural Periods for a Suspension Bridge)

  • 김호경;이재홍
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.450-454
    • /
    • 2003
  • Natural periods are usually determined by the so-called linearized finite displacement theory even for a suspension bridge. This linearized method, with formulating structural stiffness by taking dead-load tension into consideration, calculates the natural periods of the bridge. As a result, the assumed initial tensions for each cable member may affect the accuracy of calculated natural periods and some other dynamic responses. This paper mainly demonstrates the effect of initially introduced tension accuracy on the evaluation of dynamic characteristics for a suspension bridge.

  • PDF

Effect of Bridge Exercise Combined with Functional Electrical Stimulation on Trunk Muscle Activity and Balance in Stroke Patients

  • Kang, Jeongil;Jeong, Daekeun;Heo, Sinhaeng
    • 국제물리치료학회지
    • /
    • 제12권2호
    • /
    • pp.2323-2330
    • /
    • 2021
  • Background: Stroke patients have weak trunk muscle strength due to brain injury, so a single type of exercise is advised for restoring functionality. However, even after intervention, the problem still lies and it is suggested that another intervention method should be applied with exercise in order to deal with such problem. Objectives: To Investigate the effect of bridge exercise combined with functional electrical stimulation (FES) on trunk muscle activity and balance in stroke patients. Design: Randomized controlled trial. Methods: From July to August 2020, twenty stroke patients was sampled, ten patients who mediated bridge exercises combined with functional electrical stimulation were assigned to experiment group I, and ten patients who mediated general bridge exercises were assigned to experiment groupII. For the pre-test, using surface EMG were measured paralyzed rectus abdominis, erector spinae, transverse abdominis/internal oblique muscle activity, and using trunk impairment scale were measured balance. In order to find out immediate effect after intervention, post-test was measured immediately same way pre-test. Results: Change in balance didn't show significant difference within and between groups, but muscle activity of trunk was significant difference rectus abdominis and erector spinae within groups I (P<.01), also between groups was significant difference (P<.05). Conclusion: Bridge exercise combined with FES could improve trunk function more effectively than general bridge exercise due to physiological effect of functional electrical stimulation.

탄성받침을 사용한 도로교의 충격하중특성 분석 (Vehicular Impact Loading on with Laminated Rubber Bearing)

  • 김상효;허진영;신용준;이용선
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 봄 학술발표회논문집
    • /
    • pp.230-237
    • /
    • 2000
  • The purpose of this study is to evaluate the dynamic behavior of highway bridge due to moving vehicle load, considering the effect of laminated rubber bearing. Dynamic behaviors of bridge considering the effect of bearings are studied with 3-dimensional bridge and vehicle models. To analyze the effect of bearings on the dynamic behaviors of superstructures of bridges, laminated rubber bearing is modeled as 3-dimensional frame element with equivalent stiffness and damping, and the models are included in the bridge analysis model. The results from the analytical models with laminated rubber bearing show a significant effects on dynamic responses and more complex vibration characteristics compared with the results from the bridge with pot bearings. Generally, larger dynamic amplification factors are obtained in the case of laminated rubber bearing, which is mainly due to the smaller torsional stiffness of the bridge with laminated rubber bearing. It can be recommended that were careful consideration on the vibration of bridges and dynamic load allowance in design are needed when adopting laminated rubber bearing.

  • PDF

Case study of random vibration analysis of train-bridge systems subjected to wind loads

  • Zhu, Siyu;Li, Yongle;Togbenou, Koffi;Yu, Chuanjin;Xiang, Tianyu
    • Wind and Structures
    • /
    • 제27권6호
    • /
    • pp.399-416
    • /
    • 2018
  • In order to reveal the independent relationship between track irregularity and wind loads, the stochastic characteristics of train-bridge coupling systems subjected to wind loads were investigated by the multi-sample calculation. The vehicle was selected as 23 degrees of freedom dynamical model, and the bridge was described by three-dimensional finite element model. It was assumed that the wind loads were random processes with strong spatial correlation, while the track irregularities were stationary random ones. As a case study, a high-speed train running on a cable-stayed bridge subjected to wind loads was studied. The effect of rail irregularities was deemed to be independent of the effect of wind excitations on the coupling system in the same wind circumstance for the same project, leading to the conclusion that the effect of wind loads and moving vehicle could be calculated separately. The variance results of the stochastic responses of vehicle-bridge coupling system under the action of wind loads and rail irregularities together were equivalent to the sum of the variance of the responses induced by each excitation. Therefore, when one of the input excitations is different, only the effect of changed loads needs to be assessed. Moreover, the new calculated results were combined with the effect of unchanged loads to present the stochastic response of coupling system subjected to the different excitations, reducing the cost of computations. The stochastic characteristics, the CFD (cumulative distribution function) of the coupling system with different wind velocities, vehicle speed, and vehicle marshalling were studied likewise.

지반-구조물 상호작용을 고려한 장대교량의 동적 거동 (Dynamic Behavior of a Long-Span Bridge Considering Soil-Structure Interaction)

  • 임채민;박장호;신영석
    • 한국안전학회지
    • /
    • 제19권2호
    • /
    • pp.119-124
    • /
    • 2004
  • The effect of soil-structure interaction becomes important in the design of civil structures such as long-span bridges, which are constructed in the site composed of soft soil. Many methodologies have been developed to account for the proper consideration of soil-structure interaction effect. However, it is difficult to estimate soil-structure interaction effect accurately becaused of many uncertainties. This paper presents the results of study on soil-structure interaction and dynamic response of a long-span bridge designed in the site composed of soft soil. The effect of the soft soil was evaluated by the use of computer program SASSI and a long-span bridge structure was modeled by finite elements. Dynamic response characteristics of a long-span bridge considering soil-structure interaction wereinvestigated.

Nonlinear aerostatic stability analysis of Hutong cable-stayed rail-cum-road bridge

  • Xu, Man;Guo, Weiwei;Xia, He;Li, Kebing
    • Wind and Structures
    • /
    • 제23권6호
    • /
    • pp.485-503
    • /
    • 2016
  • To investigate the nonlinear aerostatic stability of the Hutong cable-stayed rail-cum-road bridge with ultra-kilometer main span, a FEM bridge model is established. The tri-component wind loads and geometric nonlinearity are taken into consideration and discussed for the influence of nonlinear parameters and factors on bridge resistant capacity of aerostatic instability. The results show that the effect of initial wind attack-angle is significant for the aerostatic stability analysis of the bridge. The geometric nonlinearities of the bridge are of considerable importance in the analysis, especially the effect of cable sag. The instable mechanism of the Hutong Bridge with a steel truss girder is the spatial combination of vertical bending and torsion with large lateral bending displacement. The design wind velocity is much lower than the static instability wind velocity, and the structural aerostatic resistance capacity can meet the requirement.