• Title/Summary/Keyword: Bridge Program

Search Result 578, Processing Time 0.023 seconds

A Study on development of the real-time monitoring program about the bridge using ubiquitous technology (유비쿼터스 기술을 이용한 교량의 상시 모니터링 프로그램 개발에 관한 연구)

  • Jo, Byung-Wan;Kim, Do-Keun;Park, Jung-Hoon;Kim, Heoun
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.493-496
    • /
    • 2008
  • In case of collapsed or damaged Servicing infrastructure, such as a bridge, tunnel, dam, a severe loss may have to be incurred. Therefore, infrastructure should not be designed and constructed properly but also maintained impeccably. This paper tried to build an intelligent bridge maintenance system that warn the people on bridge and control traffic in the danger. For the purpose, diverse wireless sensor fields are composed and structure's database is established. Also the paper develops a bridge maintenance program. Developed programme is regarded as a good tool to provide the utmost bridge management scenario, which is exactly correspondent with the demand and restraint by improving the present bridge management strategy.

  • PDF

Nonlinear Dynamic Analysis of Vehicle-Bridge Interaction considering the Hertzian Contact Spring and Rail Irregularities (헤르쯔 접촉스프링과 레일 요철을 고려한 차량-교량 동적상호작용 비선형 해석)

  • Kang, Young-Jong;Neuyen, Van-Ban;Kim, Jung-Hun;Kang, Yoon-Suk
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1478-1485
    • /
    • 2010
  • In this paper, the nonlinear dynamic response of Vehicle-Bridge interaction with the coupled equations of motion including nonlinear Hertzian contact is presented. The moving train model is chosen to have 10 degrees of freedom (DOF). The bridge is modeled as 2D Euler-Bernoulli beam element with 4 DOF for each element, two for rotations and another two for translations. The nonlinear Hertzian contact is used to simulate the interaction between vehicle and bridge. Base on the relationship of wheel displacement of the vehicle and the vertical displacement of the bridge in Hertzian contact, the coupled equations of motion of the whole system is derived. The convenient formulation was encoded into a computer program. The contact forces, contact area and stress of the rail surface were also computed. The accuracy and efficiency of the proposed program are verified and compared with exact analytical solution and other previous studies. Various numerical examples and parametric studies have demonstrated the versatility and applicability of the proposed program.

  • PDF

A Study on the Optimal Design of Prestressed Concrete Box Girder Bridges (프리스트레스트 콘크리트 박스 거더 교량의 최적 설계에 관한 연구)

  • 노금래;윤희택;박선규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.251-256
    • /
    • 1999
  • In the preliminary design stage of Prestressed Concrete (PSC) Box Girder Bridges, the design factors(including depth, thickness of web, and jacking force) decided by inexperience designer could heavily affect the final design factors. So there is a possibility that the design ends up with an excessively wasteful design. To aim at an economical design with preventing an excessive design, the optimal design program has been developed by using ADS optimal program and SPCFRAME(PSC Bridge analysis program) in these studies. The optimal design program automatically calculates economically optimized design studies. The optimal design program automatically calculates economically optimized design factors by introducing the optimal design techniques of PSC box girder bridge design. The objective function for optimal design is material cost of box girder and constrained functions are constituted with design specifications and workability. The optimal design techniques used the Sequential Unconstraint Minimization Technique (SUMT) with performing the optimal design program. In this study, We designed unprismatic section bridge and prismatic section bridge in the same design condition by optimal design program developed in this study. By analyzing the results we suggested the practical form of tendon's layout comparing the optimal desingns on the basis of each tendon's layout.

  • PDF

Three-dimensional finite element modeling of a long-span cable-stayed bridge for local stress analysis

  • Lertsima, Chartree;Chaisomphob, Taweep;Yamaguchi, Eiki
    • Structural Engineering and Mechanics
    • /
    • v.18 no.1
    • /
    • pp.113-124
    • /
    • 2004
  • The information on local stress acting in a bridge is required in many occasions such as fatigue assessment. The analysis by beam elements cannot yield this class of information adequately, while the finite element modeling of an entire long-span bridge by shell elements is impractical. In the present study, the hybrid modeling is tried out: only part of a bridge in which the point of interest is located is discretized by shell elements and the remaining part is modeled by beam elements. By solving a simple box girder problem, the effectiveness of this approach is discussed. This technique is then applied to the Rama IX Bridge for local stress evaluation. The numerical results compare very well with the results of a full-scale static loading test. The present research thus offers a practical yet accurate technique for the stress analysis of a long-span cable-stayed bridge.

Highway bridge live loading assessment and load carrying capacity estimation using a health monitoring system

  • Moyo, Pilate;Brownjohn, James Mark William;Omenzetter, Piotr
    • Structural Engineering and Mechanics
    • /
    • v.18 no.5
    • /
    • pp.609-626
    • /
    • 2004
  • The Land Transport Authority of Singapore has a continuing program of highway bridge upgrading, to refurbish and strengthen bridges to allow for increasing vehicle traffic and increasing axle loads. One subject of this program has been a short span bridge taking a busy highway across a coastal inlet near a major port facility. Experiment-based structural assessments of the bridge were conducted before and after upgrading works including strengthening. Each assessment exercise comprised two separate components; a strain and acceleration monitoring exercise lasting approximately one month, and a full-scale dynamic test carried out in a single day. This paper reports the application of extreme value statistics to estimate bridge live loads using strain measurements.

Development of a Quasi-Three Dimensional Train/Track/Bridge Interaction Analysis Program for Evaluating Dynamic Characteristics of High Speed Railway Bridges (고속철도 교량의 동특성 해석을 위한 준3차원 차량/궤도/교량 상호작용 해석기법의 개발)

  • 김만철
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.2
    • /
    • pp.141-151
    • /
    • 2003
  • Railway bridges are subject to dynamic loads generated by the interaction between moving vehicles and the bridge structures. These dynamic loads result in response fluctuations in bridge members. To investigate the real dynamic behavior of the bridge, therefore, a number of analytical and experimental Investigations should be carried out. In this paper, a train/track/bridge interaction analysis program for evaluating the dynamic characteristics of bridges due to KTX operation in terms of structural safety, operational safety and passenger comfort is developed. To build a practical model of train/track/bridge, Hertzian spring for wheel/rail contact modeling and Winkler element for ballast are applied. This program also used torsional degree of freedom and constraint equation based on geometrical relationship in order to take into consideration three-dimensional eccentricity effect due to the operation on double track through quasi-three dimensional analysis. To verify the developed Program, comparison has been made between the measured results and those of simulation of the typical PSC box bridge(2@40m=80m) of the KHSR bridges.

Structural performance assessment of deteriorated reinforced concrete bridge piers

  • Kim, T.H.
    • Computers and Concrete
    • /
    • v.14 no.4
    • /
    • pp.387-403
    • /
    • 2014
  • The aim of this study is to assess the structural performance of deteriorated reinforced concrete bridge piers, and to provide method for developing improved evaluation method. For a deteriorated bridge piers, once the cover spalls off and bond between the reinforcement and concrete has been lost, compressed reinforcements are likely to buckle. By using a sophisticated nonlinear finite element analysis program, the accuracy and objectivity of the assessment process can be enhanced. A computer program, RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), is used to analyze reinforced concrete structures. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. Advanced deteriorated material models are developed to predict behaviors of deteriorated reinforced concrete. The proposed numerical method for the structural performance assessment of deteriorated reinforced concrete bridge piers is verified by comparing it with reliable experimental results. Additionally, the studies and discussions presented in this investigation provide an insight into the key behavioral aspects of deteriorated reinforced concrete bridge piers.

Analysis of Soil-Structure Interaction of a Long-Span Bridge Considering Incident Angle of Input Ground Motion (입사각을 고려한 장대교량의 지반-구조물 상호작용 해석)

  • Park, Jang-Ho;Shin, Yung-Seok;Choi, Seung-Hwan
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.2
    • /
    • pp.7-13
    • /
    • 2008
  • In a long-span bridge which is constructed on soft soil, it is requested to make a plan considering soil-structure interaction, and soil-structure interaction is partially under consideration at the actual bridge plan. Many researches on dynamic behavior of a bridge affected by soil-structure interacting have been accomplished, but it is difficult to estimate dynamic behavior of a bridge on soft soil accurately because of many uncertainties. This paper presents the results about dynamic response of a long-span suspension bridge in the site composed of soft soil considering incident angle of input ground motion. The effect of soft soil was evaluated by the use o computer program SASSI and a long-span suspension bridge was modeled by finite element program MIDAS. The effect of incident angle of input ground motion was investigated on the dynamic response of a long-span bridge.

Comparison of Totally Prefabricated Bridge Substructure Designed According to Korea Highway Bridge Design (KHBD) and AASHTO-LRFD

  • Kim, Tae-Hoon
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.4
    • /
    • pp.319-332
    • /
    • 2013
  • The purpose of this study was to investigate the design comparison of totally prefabricated bridge substructure system. Prefabricated bridge substructure systems are a relatively new and versatile alternative in substructure design that can offer numerous benefits. The system can reduce the work load at a construction site and can result in shorter construction periods. The prefabricated bridge substructures are designed by the methods of Korea Highway Bridge Code (KHBD) and load and resistance factor design (AASHTO-LRFD). For the design, the KHBD with DB-24 and DL-24 live loads is used. This study evaluates the design method of KHBD (2005) and AASHTO-LRFD (2007) for totally prefabricated bridge substructure systems. The computer program, reinforced concrete analysis in higher evaluation system technology was used for the analysis of reinforced concrete structures. A bonded tendon element is used based on the finite element method, and can represent the interaction between the tendon and concrete of a prestressed concrete member. A joint element is used in order to predict the inelastic behaviors of segmental joints. This study documents the design comparison of totally prefabricated bridge substructure and presents conclusions and design recommendations based on the analytical findings.