• Title/Summary/Keyword: Bridge Management System (BMS)

Search Result 31, Processing Time 0.023 seconds

Vibration Serviceability Evaluation for Pedestrian of Concrete Cable-stayed Bridge by Experimental Method (실험적 방법에 의한 콘크리트 사장교의 보행자 중심 진동사용성 평가)

  • Kang, Sung-Hoo;Choi, Bong-Hyun;Park, Sun-Joon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.2
    • /
    • pp.59-66
    • /
    • 2011
  • In this study, the vibration serviceability of pedestrian by travelling vehicles on the cable-stayed bridge with concrete tower was studied. Experiment variables were considered travelling speed of vehicles, pavement state of asphalt on the deck and weight of vehicles, preferentially. Especially, pavement grade states were considered by A and C grades by BMS (Bridge Management System) standard. The incremental ratio extent of vibration acceleration responses, asphalt pavement grade C over A, was construed to 1.23~1.43. Only, these results are valid within extent of the Scaled-Weight 228.0~1161.9 km/h kN. The vibration equations for acceleration responses prediction of bridge deck were proposed into three types, reliability 50%, 90%, 95% respectively. These equations can consider asphalt pavement grade, and the vehicle's weight and travelling velocity, which are the source of vibration, are combined into the term called, 'Scaled Weight'.

Bridge Management System(BMS) of Location Information(LI)-Based for the Mobile Personal Digital Management(PDA) (Mobile PDA(Personal Digital Assistant)를 활용한 위치정보기반의 교량 유지관리 시스템)

  • Yi Sung-Hyun;Lee Tai-Sik;Kim Young-Hyun
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.519-522
    • /
    • 2002
  • Currently, in spite of continual efforts, the information utility of the construction industry does not communicate well with other industries. This problem arose from mistaken and misguided efforts on the parts of the construction industry because it left out of consideration construction characteristics which are at the center of construction, and this information system was directly introduced and operated from outside the industry. There were also other mistakes that the existing information systems disregarded in trying to fix these problems. Therefore, this study describes a new process, which proposes to build and utilize a Bridge Management System using the mobile internet concept, to solve the problems of the existing construction information management system.

  • PDF

Condition monitoring and rating of bridge components in a rail or road network by using SHM systems within SRP

  • Aflatooni, Mehran;Chan, Tommy H.T;Thambiratnam, David P.
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.3
    • /
    • pp.199-211
    • /
    • 2015
  • The safety and performance of bridges could be monitored and evaluated by Structural Health Monitoring (SHM) systems. These systems try to identify and locate the damages in a structure and estimate their severities. Current SHM systems are applied to a single bridge, and they have not been used to monitor the structural condition of a network of bridges. This paper propose a new method which will be used in Synthetic Rating Procedures (SRP) developed by the authors of this paper and utilizes SHM systems for monitoring and evaluating the condition of a network of bridges. Synthetic rating procedures are used to assess the condition of a network of bridges and identify their ratings. As an additional part of the SRP, the method proposed in this paper can continuously monitor the behaviour of a network of bridges and therefore it can assist to prevent the sudden collapses of bridges or the disruptions to their serviceability. The method could be an important part of a bridge management system (BMS) for managers and engineers who work on condition assessment of a network of bridges.

Amber Information Design to Keep Safety-Driving Under Road Structure at Local-Scale Geographic (국지지역 도로 기반 시설에서 안전운전을 위한 경보 정보 설계)

  • Park, Jung-Chan;Hong, Gyu- Jang
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.1
    • /
    • pp.48-55
    • /
    • 2009
  • In order to keep safe driving conditions under road networks, there are several formations such as road structure, road surface condition, traffic occupancy and supplement of an accurate information of traffic status ahead To support safe-driving on each road formation, each formation is supplied with various information to help the driver. However, in some cases like rapid status change at local-scale geography, traffic information systems often displays insufficient information because of the lack of information correlation. In order to accurately aware the driver, all road formation must be in sync. It is important to supply accurate information to the driver because this information directly impacts the drivers on the road. This paper discusses the amber information to keep the least safety driving over road formations including tunnels and bridges. This paper also will propose the informations for safe-driving conditions, information linkage on the road and rule-base safety information, as ITS technology, being displayed for all drivers under the worst weather conditions.

Development of Realtime Bridge Safety Monitoring System (실시간 교량 안전감시시스템 개발)

  • Nam, Myung-Woo;Yang, Ok-Yul;Lee, Young-Seock;Oh, Myung-Kwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.1
    • /
    • pp.79-84
    • /
    • 2010
  • In this paper, we developed the BMSWare(Bridge Management System Middleware) for bridge safety surveillance in real time processing. The developed system operates on web and considers the general monitoring application for bridges. In various environments in geographical location of bridge, it can obtain reliably data from various logger and sensors without re-programming. The main functions of the developed system include the acquisition, processing, backup and transmission of the collected sensor data. It was proved to be the safety and effectiveness by application of Mooyeong bridge.

Development of Robotic Inspection System over Bridge Superstructure (교량 상판 하부 안전점검 로봇개발)

  • Nam Soon-Sung;Jang Jung-Whan;Yang Kyung-Taek
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.180-185
    • /
    • 2003
  • The increase of traffic over a bridge has been emerged as one of the most severe problems in view of bridge maintenance, since the load effect caused by the vehicle passage over the bridge has brought out a long-term damage to bridge structure, and it is nearly impossible to maintain operational serviceability of bridge to user's satisfactory level without any concern on bridge maintenance at the phase of completion. Moreover, bridge maintenance operation should be performed by regular inspection over the bridge to prevent structural malfunction or unexpected accidents front breaking out by monitoring on cracks or deformations during service. Therefore, technical breakthrough related to this uninterested field of bridge maintenance leading the public to the turning point of recognition is desperately needed. This study has the aim of development on automated inspection system to lower surface of bridge superstructures to replace the conventional system of bridge inspection with the naked eye, where the monitoring staff is directly on board to refractive or other type of maintenance .vehicles, with which it is expected that we can solve the problems essentially where the results of inspection are varied to change with subjective manlier from monitoring staff, increase stabilities in safety during the inspection, and make contribution to construct data base by providing objective and quantitative data and materials through image processing method over data captured by cameras. By this system it is also expected that objective estimation over the right time of maintenance and reinforcement work will lead enormous decrease in maintenance cost.

  • PDF

Prediction of the remaining service life of existing concrete bridges in infrastructural networks based on carbonation and chloride ingress

  • Zambon, Ivan;Vidovic, Anja;Strauss, Alfred;Matos, Jose;Friedl, Norbert
    • Smart Structures and Systems
    • /
    • v.21 no.3
    • /
    • pp.305-320
    • /
    • 2018
  • The second half of the 20th century was marked with a significant raise in amount of railway bridges in Austria made of reinforced concrete. Today, many of these bridges are slowly approaching the end of their envisaged service life. Current methodology of assessment and evaluation of structural condition is based on visual inspections, which, due to its subjectivity, can lead to delayed interventions, irreparable damages and additional costs. Thus, to support engineers in the process of structural evaluation and prediction of the remaining service life, the Austrian Federal Railways (${\ddot{O}}$ BB) commissioned the formation of a concept for an anticipatory life cycle management of engineering structures. The part concerning concrete bridges consisted of forming a bridge management system (BMS) in a form of a web-based analysis tool, known as the LeCIE_tool. Contrary to most BMSs, where prediction of a condition is based on Markovian models, in the LeCIE_tool, the time-dependent deterioration mechanisms of chloride- and carbonation-induced corrosion are used as the most common deterioration processes in transportation infrastructure. Hence, the main aim of this article is to describe the background of the introduced tool, with a discussion on exposure classes and crucial parameters of chloride ingress and carbonation models. Moreover, the article presents a verification of the generated analysis tool through service life prediction on a dozen of bridges of the Austrian railway network, as well as a case study with a more detailed description and implementation of the concept applied.

A Study on the Asset Valuation Method Based on the Performance Information of Bridge (교량 성능 정보에 기초한 자산가치 평가 방법 연구)

  • Yong-Jun Lee;Kyung-Hoon Park;Jong-Wan Sun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.5
    • /
    • pp.57-66
    • /
    • 2023
  • Asset valuation of social infrastructure is essential for rational decision-making for efficient management of assets. In addition, it can be an indicator for correctly recognizing assets. In general, Korea applies depreciated replacement cost based on the straight-line method to evaluate asset value, yet this is unsuitable for evaluating actual value because it is depreciated at a constant rate over the useful life period. In order to evaluate the asset value considering the performance of the bridge, the performance index of the bridge is estimated using the Weibull distribution. Using the estimated performance indicators and defect index, a new asset value evaluation method is proposed and compared and analyzed with the existing method. The proposed valuation method can take into account the performance of the bridge, so it is judged to be more objective and reasonable than existing method.

A Study on the Correlation between Damage and Repair Volume of Bridge Maintenance (교량 유지보수의 손상물량과 보수물량 상관관계 연구)

  • Lee, Changjun;Park, Taeil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.4
    • /
    • pp.577-585
    • /
    • 2024
  • Infrastructure plays a crucial role in the industrial development and economic growth of a nation. However, recently, domestic infrastructure has been causing not only safety risks due to aging but also social and economic inefficiencies, increasing the need for maintenance. In particular, the deterioration rate of bridges is serious, so application of appropriate repair and rehabilitation methods and estimation of its quantity are required. In this study, frequently applied repair methods for bridges using data from the Facility Integrated Management System (FMS) were identified. the empirical correlation between damage volume and the repair volume was analyzed using Bridge Management System (BMS) data. The result of the analysis showed that the ratio of the repair volume to the damage volume was 1.0. The guideline, on the other hand, suggest 1.5 the ratio of the repair volume to the damage volume. Although the guidelines differently present more conservative figures considering safety, this study is significant in that it presents a practical ratio through data analysis results. This results can be used to develop a model that can calculate the amount of repair and rehabilitation of various facilities in the future.

Development of Infrastructure Maintenance Map based on GIS Data for Efficient Budget Management

  • Changjun Lee;Taeil Park;Yongwoon Cha
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.209-215
    • /
    • 2024
  • Many developed countries, including Korea, are rapidly aged owing to years of use. Infrastructures such as roads, water, and sewage are Social Overhead Capital (SOC), which provide convenience to the nation and support national economic growth. Thus, continuous maintenance and investment are required because infrastructure deterioration is directly related to social effects, such as quality of life and safety. In addition, because infrastructure maintenance costs a lot of the budget, it is necessary to appropriate criteria for budget allocation, given assessing the condition of infrastructure. This study developed an Infrastructure Maintenance Map (IMM) based on a Geographic Information System (GIS) for infrastructure maintenance budgets and investment priorities. The IMM uses maintenance information for roads, bridges, water, and sewage, obtained from Bridge Management System (BMS), Pavement Management System (PMS) and facility data in South Korea. The IMM can calculate deterioration levels and maintenance costs of infrastructure repair methods. Maintenance priorities are also evaluated based on Multi-Attribute Utility Theory using the deterioration level, economic feasibility, and effect of facilities. This study contributes to easy decision-making regarding infrastructure investment priorities and maintenance budgeting to the status of facility on the 3D map by IMM.