• Title/Summary/Keyword: Bridge Deck

Search Result 930, Processing Time 0.025 seconds

Extraction of rational functions by forced vibration method for time-domain analysis of long-span bridges

  • Cao, Bochao;Sarkar, Partha P.
    • Wind and Structures
    • /
    • v.16 no.6
    • /
    • pp.561-577
    • /
    • 2013
  • Rational Functions are used to express the self-excited aerodynamic forces acting on a flexible structure for use in time-domain flutter analysis. The Rational Function Approximation (RFA) approach involves obtaining of these Rational Functions from the frequency-dependent flutter derivatives by using an approximation. In the past, an algorithm was developed to directly extract these Rational Functions from wind tunnel section model tests in free vibration. In this paper, an algorithm is presented for direct extraction of these Rational Functions from section model tests in forced vibration. The motivation for using forced-vibration method came from the potential use of these Rational Functions to predict aerodynamic loads and response of flexible structures at high wind speeds and in turbulent wind environment. Numerical tests were performed to verify the robustness and performance of the algorithm under different noise levels that are expected in wind tunnel data. Wind tunnel tests in one degree-of-freedom (vertical/torsional) forced vibration were performed on a streamlined bridge deck section model whose Rational Functions were compared with those obtained by free vibration for the same model.

A low computational cost method for vibration analysis of rectangular plates subjected to moving sprung masses

  • Nikkhoo, Ali;Asili, Soheil;Sadigh, Shabnam;Hajirasouliha, Iman;Karegar, Hossein
    • Advances in Computational Design
    • /
    • v.4 no.3
    • /
    • pp.307-326
    • /
    • 2019
  • A low computational cost semi-analytical method is developed, based on eigenfunction expansion, to study the vibration of rectangular plates subjected to a series of moving sprung masses, representing a bridge deck under multiple vehicle or train moving loads. The dynamic effects of the suspension system are taken into account by using flexible connections between the moving masses and the base structure. The accuracy of the proposed method in predicting the dynamic response of a rectangular plate subjected to a series of moving sprung masses is demonstrated compared to the conventional rigid moving mass models. It is shown that the proposed method can considerably improve the computational efficiency of the conventional methods by eliminating a large number of time-varying components in the coupled Ordinary Differential Equations (ODEs) matrices. The dynamic behaviour of the system is then investigated by performing a comprehensive parametric study on the Dynamic Amplification Factor (DAF) of the moving loads using different design parameters. The results indicate that ignoring the flexibility of the suspension system in both moving force and moving mass models may lead to substantially underestimated DAF predictions and therefore unsafe design solutions. This highlights the significance of taking into account the stiffness of the suspension system for accurate estimation of the plate maximum dynamic response in practical applications.

Acoustic emission localization in concrete using a wireless air-coupled monitoring system

  • Yunshan Bai;Yuanxue Liu;Guangjian Gao;Shuang Su
    • Smart Structures and Systems
    • /
    • v.32 no.4
    • /
    • pp.195-205
    • /
    • 2023
  • The contact acoustic emission (AE) monitoring system is time-consuming and costly for monitoring concrete structures in large scope, in addition, the great difference in acoustic impedance between air and concrete makes the detection process inconvenient. In this work, we broaden the conventional AE source localization method for concrete to the non-contact (air-coupled) micro-electromechanical system (MEMS) microphones array, which collects the energy-rich leaky Rayleigh waves, instead of the relatively weak P-wave. Finite element method was used for the numerical simulations, it is shown that the propagation velocity of leaky Rayleigh waves traveling along the air-concrete interface agrees with the corresponding theoretical properties of Lamb wave modes in an infinite concrete slab. This structures the basis for implementing a non-contact AE source location approach. Based on the experience gained from numerical studies, experimental studies on the proposed air-coupled AE source location in concrete slabs are carried out. Finally, it is shown that the locating map of AE source can be determined using the proposed system, and the accuracy is sufficient for most field monitoring applications on large plate-like concrete structures, such as tunnel lining and bridge deck.

Performance of Magnetic Compasses Installed on the Small Fishing Vessels (연안어선 자기컴퍼스에 관한 연구)

  • Hong, Jang-Pyo;Shin, Hyeong-Il
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.29 no.1
    • /
    • pp.21-29
    • /
    • 1993
  • The magnetic compass as a principal navigational instrument has been long used to fix ship's position and to determine ship's course. Particularly, in the small fishing vessels the studies on performance and rational usages for magnetic compass are requried to improve the safety and productivity of the small fishing vessels even though gyro compass is developed nowadays. For this purpose, the author examined the present condition of the magnetic compasses which are intalled on 219 small fishing vessels, and carried out a series of performance survey for each compass of them and also found the measured values of deviation by installation position of compass, respectively. The results obtained are summarized as follows: 1. The small fishing vessels less than 4 tons among the 219 small fishing vessels from 1 to 10 tons investigated were 50% of them. Only 1% of them were equipped with the deviation correctors, and 14 fishing vessels used the magnetic compasses which are more than 20 years old. 2. According to the compass installation position, the measured values of the deviation of the compass installed on the top bridge and the compass bed in bridge were ascertained to be the smallest, and those values of the compass installed on the bridge deck above engine room were larger and irregular. 3. The concomitant angle of the magnetic compasses installed on the experimented 4 fishing vessels were measured to be 6$^{\circ}$ to 16$^{\circ}$ and not accorded with the Korean standard values.

  • PDF

Landscape Design of Gamcheon Wholesale Fish Market (감천항 수산물 도매시장 조경설계)

  • 권영휴;민권식;황용득
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.30 no.2
    • /
    • pp.70-78
    • /
    • 2002
  • The landscape disign of Gamcheon wholesale fish Market was designed around a turnkey base to promote the economy of Busan Metropolitan City, to establish a fishery marketing center and to modernize existing facilities. The objectives of the project were to promote the mood of an old market, while preserving its functions and efficiency as a market, to design outdoor spaces with natural resources and amenities in balance, and to create attractive tourist spots in connection with the wide area development plan. The project was oriented, fast, to enhance the functions of the market. For this purpose, a multi-dimensional space layout was designed in consideration of functions as a wholesale market. The safety of pedestrians was secured by separating lathes for vehicles and for pedestrians. Tree planting with various functions such as sheltering, wind breaking and guiding was planned. Secondly, nature-friendly and human-friendly landscaping design was attempted. For this, the beautiful natural resources of Amnam Park were utilized, and green spaces such as green bridges linking buildings in the wholesale market, and rooftop gardens were to be arranged. In addition, environment-friendly facilities such as roads paved with natural materials(i.e. gravel, shells) and program parking lots were to be planned. Thirdly, landscape design was considered to create attractive tourist spots. For example, a fish farm was created as a theme street for pedestrians and various water-friendly spaces such as pedestrian ramps, observatories and seaside streets were to be secured. The main contents are as follows. First, a green bridge to Ahnnam Park was introduced for a tour source and flower garden, an event plan and viewing deck open to the sea were planned on the bridge's axis. Secondly, for the effective land use plan concerning open space and convenience to visitors, a promenade was planned, which is connected with the theme plaza and small plazas by environmental sculptures in front of the market hall and at the gate. As well, an observatory and a roof garden help create three dimensional multi leveled space, with a good view of the natural landscape of the sea, sky and park Thirdly, landscape materials, such as trees and those for facilities, strengthened for protection against the seawind and salt damage were selected. The commercial market area was intended to be transformed a traditional functional area of efficiency and economy into an attractive marine leisure area where both tourists and neighbors can make use of it.

A Failure Probability Estimation Method of Nonlinear Bridge Structures using the Non-Gaussian Closure Method (Non-Gaussian Closure 기법을 적용한 비선형 교량 구조계의 파괴확률 추정 기법)

  • Hahm, Dae-Gi;Koh, Hyun-Moo;Park, Kwan-Soon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.25-34
    • /
    • 2010
  • A method is presented for evaluating the seismic failure probability of bridge structures which show a nonlinear hysteretic dynamic behavior. Bridge structures are modeled as a bilinear dynamic system with a single degree of freedom. We regarded that the failure of bridges will occur when the displacement response of a deck level firstly crosses the predefined limit state during a duration of strong motion. For the estimation of the first-crossing probability of a nonlinear structural system excited by earthquake motion, we computed the average frequency of crossings of the limit state. We presented the non-Gaussian closure method for the approximation of the joint probability density function of response and its derivative, which is required for the estimation of the average frequency of crossings. The failure probabilities are estimated according to the various artificial earthquake acceleration sets representing specific seismic characteristics. For the verification of the accuracy and efficiency of presented method, we compared the estimated failure probabilities with the results evaluated from previous methods and the exact values estimated with the crude Monte-Carlo simulation method.

Seismic investigation of cyclic pushover method for regular reinforced concrete bridge

  • Shafigh, Afshin;Ahmadi, Hamid Reza;Bayat, Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.78 no.1
    • /
    • pp.41-52
    • /
    • 2021
  • Inelastic static pushover analysis has been used in the academic-research widely for seismic analysis of structures. Nowadays, the variety pushover analysis methods have been developed, including Modal pushover, Adaptive pushover, and Cyclic pushover, in which some weaknesses of the conventional pushover method have been rectified. In the conventional pushover analysis method, the effects of cumulative growth of cracks are not considered on the reduction of strength and stiffness of RC members that occur during earthquake or cyclic loading. Therefore, the Cyclic Pushover Analysis Method (CPA) has been proposed. This method is a powerful technique for seismic evaluation of regular reinforced concrete buildings in which the first mode of them is dominant. Since the bridges have different structures than buildings, their results cannot necessarily be attributed to bridges, and more research is needed. In this study, a cyclic pushover analysis with four loading protocols (suggested by valid references) by the Opensees software was conducted for seismic evaluation of two regular reinforce concrete bridges. The modeling method was validated with the comparison of the analytical and experimental results under both cyclic and dynamic loading. The failure mode of the piers was considered in two-mode of flexural failure and also a flexural-shear failure. Along with the cyclic analysis, conventional analysis has been studied. Also, the nonlinear incremental dynamic analysis (IDA) method has been used to examine and compare the results of pushover analyses. The time history of 20 far-field earthquake records was used to conduct IDA. After analysis, the base shear vs. displacement in the middle of the deck was drawn. The obtained results show that the cyclic pushover analysis method is able to evaluate an accurate seismic behavior of the reinforced concrete piers of the bridges. Based on the results, the cyclic pushover has proper convergence with IDA. Its accuracy was much higher than the conventional pushover, in which the bridge piers failed in flexural-shear mode. But, in the flexural failure mode, the results of each two pushover methods were close approximately. Besides, the cyclic pushover method with ACI loading protocol, and ATC-24 loading protocol, can provided more accurate results for evaluating the seismic investigation of the bridges, specially if the bridge piers are failed in flexural-shear failure mode.

Evaluation of Static Strength of Group Stud Shear Connection in Precast Concrete Deck Bridges (프리캐스트 콘크리트 바닥판 교량의 그룹 스터드 전단연결부 강도평가)

  • Shim, Chang Su;Jeon, Seung Min;Kim, Dong Wook
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.2
    • /
    • pp.333-345
    • /
    • 2008
  • concrete deck bridges are increasingly aplied to twin- girder bridges and open-stel box girder bridges.One of the most dificult isues in the design of shear conect ors is the mater of achieving ful composite action. Many connectors in smal area require a significant section los of precast decks resulting in difficult reinforcement details. In this closer spacing than the required minimum spacing in the design codes was evaluated through static tests. Test results s howed that the ultimate strength decreased as the conector spacing was reduced. The strength enhancement was observed due to aditional reinforcement for precast slabs or for shear pockets. Thus, the design of group stud shear connection needs to anticipate failure modes and the conector failure should be induced. Based on the test results, an empirical equation consi dering stud spacing was proposed to evaluate the ultimate strength of group stud shear conection. Fatigue tests showed n o reduction in fatigue life of the group stud shear conection in the range of this research. Details of the precast decks wer e enhanced using the findings of the study.

Visualization of Structural Shape Information based on Octree using Terrestrial Laser Scanning (3D레이저스캐닝을 이용한 옥트리기반 구조물 형상정보 가시화)

  • Cha, Gichun;Lee, Donghwan;Park, Seunghee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.8-16
    • /
    • 2016
  • This study presents the visualization of shape information based on Octree using 3D laser scanning. The process of visualization was established to construct the Octree structure from the 3D scan data. The scan data was converted to a 2D surface through the mesh technique and the surface was then converted to a 3D object through the Raster/Vector transformation. The 3D object was transmitted to the Octree Root Node and The shape information was constructed by the recursive partitioning of the Octree Root Node. The test-bed was selected as the steel bridge structure in Sungkyunkwan University. The shape information based on Octree was condensed into 89.3%. In addition, the Octree compressibility was confirmed to compare the shape information of the office building, a computer science campus in Germany and a New College in USA. The basis is created by the visualization of shape information for double-deck tunnel and it will be expected to improve the efficiency of structural health monitoring and maintenance.

Punching Shear Strength of Deck Slabs Made of Ultra High Performance Concrete (UHPC 바닥판 슬래브의 뚫림전단강도)

  • Joh, Chang Bin;Kim, Byung Suk;Hwang, Hoon Hee;Choi, Kyoung Kyu;Choi, Sok Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.4
    • /
    • pp.221-231
    • /
    • 2011
  • Thinner and lighter structural members can be designed by utilizing the high stiffness and toughness, and high compressive strength of UHPC(ultra high performance concrete), which reaches up to 200MPa. The punching shear capacity of UHPC was investigated in this paper aiming for the application of UHPC to bridge decks. Six square slabs were fabricated and punching shear test was performed under fixed boundary condition. Different thicknesses of test slabs, which were 40mm and 70mm, were selected. The shape ratio of loading plates were ranged between 1.0~2.5. 40mm thickness slabs showed longer softening region after the peak load and, on the other hand, 70mm thickness slabs revealed a more brittle shear failure. Experimental results were analyzed using various existing punching shear predicting equations. Ductal$^{(R)}$ equation and JSCE equation better predicted for 40mm slabs, and Harajli et al. equation and ACI-Ductal$^{(R)}$ equation better suited for 70mm slabs. Nevertheless generally they didn't well predict the test results. A new punching shear equation which was derived based on the actual failure mechanism was proposed. The proposed equation appeared to better predict the punching shear strength of UHPC than other available equations.