• Title/Summary/Keyword: Bridge/Earthwork Transition Area

Search Result 6, Processing Time 0.024 seconds

Experimental and Analysis Study on Transition Area Between Bridge and Earthwork (교량, 토공 접속구간 궤도동적계측 및 해석에 관한 연구)

  • 강윤석;나성훈;신정렬;양신추
    • Proceedings of the KSR Conference
    • /
    • 2002.05a
    • /
    • pp.250-255
    • /
    • 2002
  • The transition between bridge and earthwork often causes the problems of maintenance. The damages of the track on the transition area influence running safety of train and serviceability, increase the maintenance cost. Therefore it is very important to evaluate the dynamic responses of transition and take a efficient measure. In order to evaluate the dynamic behavior of track, the field estimations are performed at the transition area of a conventional line between bridge and earthwork. And the track system on the transition area numerically analyzed to evaluate the dynamic behavior of damaged track with void sleeper. The measured values and Analysis results such as wheel contact force, rail stress, displacement acceleration and track irregularity in the transition area show the dynamic forces are severe. So it is recommended that the transition area should be improved the rigidity by reinforcing the rail.

  • PDF

Experimental Study on the Variation of Track Stiffness between Earthwork and Bridge (교량 토공 접속부에서 궤도강성변화에 대한 실험적 연구)

  • 나성훈;서사범;손기준;김정환
    • Proceedings of the KSR Conference
    • /
    • 2001.05a
    • /
    • pp.281-288
    • /
    • 2001
  • In order to evaluate the effect of impact load at support stiffness transition area, the field estimations are performed at the transition zone between earthwork and bridge on test operation of KTX. Due to differential settlement caused by the variations of track support stiffness, large impact forces are investigated. However, the measured values such as wheel load, rail stress, displacement and acceleration in the transition area shows that the stiffness changes in the transition area are not abrupt, and the stiffness in the infra track structure varies continuously. In this experimental study, the parameters influencing safety of transition area are not governed by partial or local stiffness because cumulative passing loads are not sufficient on test operation of KTX.

  • PDF

Optimal Design of Reinforced Rail over Connection Section of Bridge and Embankment (교량/토공 접속구간 보강레일의 최적설계)

  • Yang, S.C.;Kang, Y.S.;Kim, E.
    • Proceedings of the KSR Conference
    • /
    • 2002.05a
    • /
    • pp.256-263
    • /
    • 2002
  • This paper deal with optimal design of reinforced track as a track reinforcing method for transition area of track support stiffness in transition area between bridge and earthwork. When vehicle passes through transition area, dynamic properties between vehicle and track are studied by the analysis of vehicle-train interaction for the each case when reinforced tracks are used or not. furthermore, optimum decision of type and length of track are made based on the performance adapting variable parameters : support stiffness of track for bridge and earthwork, heading direction of vehicle and type and length of track.

  • PDF

Safety Evaluation of the Settlement Amount of the Bridge Earthwork Transition Area Using the Ground Penetrating Radar in the Soft Ground Section (연약지반 구간에서 지표투과레이더 활용한 교량 접속부 침하량 안전 평가)

  • Jung, Gukyoung;Jo, Youngkyun;Kim, Sungrae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.8
    • /
    • pp.17-22
    • /
    • 2022
  • To reduce the bump of bridge/earthwork transition area caused by the settlement of the soft ground during public use, the road agencies have been continuously overlay or repavement at those areas. In this study, the vehicle-mounted ground penetrating radar with 1GHz air-coupled antenna was used to estimate the settlement amount of those areas for nine bridges built in the soft ground. Results shows that it is possible to effectively measure the thickness of pavement up to a depth of 1 m on an asphalt road with ground penetrating radar technology that can inspect under the road surface. Distinctively deformation of the road surface, the variation in the thickness of the pavement measured at bridge/earth transition areas is equivalent to a minimum of 50 mm and a maximum of 600 mm, and there is a risk of cavity in the ground. The difference in the increased pavement thickness is 50~250 mm for each bridge connection, which may cause the differential settlement. In this study, by using the result of the ground penetration radar, a plan for improving drivability and maintenance of the settlement is suggested and applied to the field.

The Allowable Displacement Limit on the Approach Slab for a Railway Bridge with Ballastless Track (콘크리트궤도부설 교량의 접속슬래브 허용변위한도에 관한 연구)

  • Choi, Jin-Yu;Yang, Shin-Chu;Yoo, Jin-Young;Cho, Hyun-Cheol
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1149-1155
    • /
    • 2007
  • The transition area between a bridge and an earthwork is one of the weakest area of track because of the track geometry deterioration caused unequal settlement of backfill of abutment. In case of a ballastless track, the approach slab is installed to prevent the phenomenon. But, if there is occurred the inclined displacement on the approach slab by a settlement of the foundation or formation, the track is also under the inclined displacement. And this defect causes reducing the running stability of a vehicle, the riding comfort of passengers, and the deteriorations of track by excessive impact subjected to the track. In this study, parametric studies were performed to know what is the allowable displacement limit on the approach slab to avoid such a bad effect. The length and amount of unequal settlement of the approach slab was adopted as parameter for numerical analysis. And car body accelerations, variations of wheel force and rail stress and uplift force induced on a fastener clip are investigated. From the result, resonable settlement limits of an approach slab according to slab length was suggested.

  • PDF

The Displacement Limit at the End of an Approach Slab for a Railway Bridge with Ballastless Track (콘크리트궤도 부설 교량의 접속슬래브 단부 처짐한도에 관한 연구)

  • Choi, Jin-Yu;Yang, Shin-Chu
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.2
    • /
    • pp.195-202
    • /
    • 2008
  • The transition area between a bridge and an earthwork is one of the weakest area of track because of the track geometry deterioration caused unequal settlement of backfill of abutment. In case of a ballastless track, the approach slab could be installed to prevent such a phenomenon. But, if there is occurred the inclined displacement on the approach slab by a settlement of the foundation or formation, the track is also under the inclined displacement. And this defect causes reducing the running stability of a vehicle, the riding comfort of passengers, and increasing the track deteriorations by excessive impact force acting on the track. In this study, parametric studies were performed to investigate the displacement limit on the approach slab to avoid such problems. The length and the amount of unequal settlement of approach slab were adopted as parameter for numerical analysis considering vehicle-track interaction. Car body accelerations, variations of wheel force, stresses in rail, and uplift forces induced on fastener clip were investigated. From the result, resonable settlement limit on the end of an approach slab according to slab length was suggested.