• Title/Summary/Keyword: Breast tomosynthesis

Search Result 17, Processing Time 0.02 seconds

Comparison of Digital Mammography and Digital Breast Tomosynthesis (디지털 유방촬영기기와 3차원 디지털 유방단층영상합성기기의 비교연구)

  • Kim, Ye-Seul;Park, Hye-Suk;Choi, Jae-Gu;Choi, Young-Wook;Park, Jun-Ho;Lee, Jae-Jun;Kwak, Su-Bin;Kim, Eun-Hye;Kim, Ju-Yeon;Jung, Hyun-Jung;Lee, Haeng-Hwa;Bae, Gyu-Won;Lee, Mi-Young;Kim, Hee-Joung
    • Progress in Medical Physics
    • /
    • v.23 no.4
    • /
    • pp.261-268
    • /
    • 2012
  • Breast cancer is the second leading cause of women cancer death in Korea. The key for reducing disease mortality is early detection. Although digital mammography (DM) has been credited as one of the major reasons for the early detection to decrease in breast cancer mortality observed in the last 20 years, DM is far from perfect for several limitations. Digital breast tomosynthesis (DBT) is expected to overcome some inherent limitations of conventional mammography caused by overlapping of normal tissue and pathological tissue during the standard 2D projections for the improved lesion margin visibility and early breast cancer detection. In this study, we compared a DM system and DBT system acquired with different thickness of breast phantom. We acquired breast phantom data with same average glandular dose (AGD) from 1 mGy to 4 mGy under same experimental condition. The contrast, micro-calcification measurement accuracy and observer study were conducted with breast phantom images. As a result, the higher accuracy of lesion detection with DBT system compared to DM system was demonstrated in this study. Furthermore, the pain of patients caused by severe compression can be reduced with DBT system. In conclusion, the results indicated that DBT system play an important role in breast cancer detection.

A study of dose and image quality with Convergence FFDM and DBT using tissue-equivalent phantom in digital mammography (유방조직등가 팬텀을 이용한 디지털유방촬영장치의 FFDM과 DBT의 선량과 영상품질에 대한 융합 연구)

  • Yoo, Young-Sin;Han, Dong-Kyoon
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.2
    • /
    • pp.29-34
    • /
    • 2019
  • In this study, we measure dose against various density and thickness using phantom to compare FFDM to DBT of Digital mammography equipment and evaluate usefulness of DBT through compare the image quality of FFDM and DBT. We use mammography equipment, Selenia Dimensions ; this is able to examine breast by both FFDM and DBT, The results are that when the thickness of phantom is 6cm or more and density is 70% or more and the thickness of phantom is 7cm or more and density is 50% or more, AGD of DBT is lower than that of FFDM. The evaluation results of image quality are that in the tumor and small calcification group that composed by mammary tissue and fat, FFDM is great and in fibrin, DBT is great. But in the all thicknesses of BR3D phantom that reflected overlapped tissue of breasts, DBT is great in calcification group, fibrin and tumor. DBT is greater image quality and lower dose more than FFDM in Thick and high density breast, Therefore, DBT is more useful in Korean women's breast that is characterized dense breast than FFDM.

Factors Affecting Breast Cancer Detectability on Digital Breast Tomosynthesis and Two-Dimensional Digital Mammography in Patients with Dense Breasts

  • Soo Hyun Lee;Mi Jung Jang;Sun Mi Kim;Bo La Yun;Jiwon Rim;Jung Min Chang;Bohyoung Kim;Hye Young Choi
    • Korean Journal of Radiology
    • /
    • v.20 no.1
    • /
    • pp.58-68
    • /
    • 2019
  • Objective: To compare digital breast tomosynthesis (DBT) and conventional full-field digital mammography (FFDM) in the detectability of breast cancers in patients with dense breast tissue, and to determine the influencing factors in the detection of breast cancers using the two techniques. Materials and Methods: Three blinded radiologists independently graded cancer detectability of 300 breast cancers (288 women with dense breasts) on DBT and conventional FFDM images, retrospectively. Hormone status, histologic grade, T stage, and breast cancer subtype were recorded to identify factors affecting cancer detectability. The Wilcoxon signed-rank test was used to compare cancer detectability by DBT and conventional FFDM. Fisher's exact tests were used to determine differences in cancer characteristics between detectability groups. Kruskal-Wallis tests were used to determine whether the detectability score differed according to cancer characteristics. Results: Forty breast cancers (13.3%) were detectable only with DBT; 191 (63.7%) breast cancers were detected with both FFDM and DBT, and 69 (23%) were not detected with either. Cancer detectability scores were significantly higher for DBT than for conventional FFDM (median score, 6; range, 0-6; p < 0.001). The DBT-only cancer group had more invasive lobular-type breast cancers (22.5%) than the other two groups (i.e., cancer detected on both types of image [both-detected group], 5.2%; cancer not detected on either type of image [both-non-detected group], 7.3%), and less detectability of ductal carcinoma in situ (5% vs. 16.8% [both-detected group] vs. 27.5% [both-non-detected group]). Low-grade cancers were more often detected in the DBT-only group than in the both-detected group (22.5% vs. 10%, p = 0.026). Human epidermal growth factor receptor-2 (HER-2)-negative cancers were more often detected in the DBT-only group than in the both-detected group (92.3% vs. 70.5%, p = 0.004). Cancers surrounded by mostly glandular tissue were detected less often in the DBT only group than in the both-non-detected group (10% vs. 31.9%, p = 0.016). DBT cancer detectability scores were significantly associated with cancer type (p = 0.012), histologic grade (p = 0.013), T and N stage (p = 0.001, p = 0.024), proportion of glandular tissue surrounding lesions (p = 0.013), and lesion type (p < 0.001). Conclusion: Invasive lobular, low-grade, or HER-2-negative cancer is more detectable with DBT than with conventional FFDM in patients with dense breasts, but cancers surrounded by mostly glandular tissue might be missed with both techniques.

Diagnostic Performance of Digital Breast Tomosynthesis with the Two-Dimensional Synthesized Mammogram for Suspicious Breast Microcalcifications Compared to Full-Field Digital Mammography in Stereotactic Breast Biopsy (정위적 유방 조직검사 시 미세석회화 의심 병변에서의 디지털 유방단층영상합성법과 전역 디지털 유방촬영술의 진단능 비교)

  • Jiwon Shin;Ok Hee Woo;Hye Seon Shin;Sung Eun Song;Kyu Ran Cho;Bo Kyoung Seo
    • Journal of the Korean Society of Radiology
    • /
    • v.83 no.5
    • /
    • pp.1090-1103
    • /
    • 2022
  • Purpose To evaluate the diagnostic performance of digital breast tomosynthesis (DBT) with the two-dimensional synthesized mammogram (2DSM), compared to full-field digital mammography (FFDM), for suspicious microcalcifications in the breast ahead of stereotactic biopsy and to assess the diagnostic image visibility of the images. Materials and Methods This retrospective study involved 189 patients with microcalcifications, which were histopathologically verified by stereotactic breast biopsy, who underwent DBT with 2DSM and FFDM between January 8, 2015, and January 20, 2020. Two radiologists assessed all cases of microcalcifications based on Breast Imaging Reporting and Data System (BI-RADS) independently. They were blinded to the histopathologic outcome and additionally evaluated lesion visibility using a fivepoint scoring scale. Results Overall, the inter-observer agreement was excellent (0.9559). Under the setting of category 4A as negative due to the low possibility of malignancy and to avoid the dilution of malignancy criteria in our study, McNemar tests confirmed no significant difference between the performances of the two modalities in detecting microcalcifications with a high potential for malignancy (4B, 4C, or 5; p = 0.1573); however, the tests showed a significant difference between their performances in detecting microcalcifications with a high potential for benignancy (4A; p = 0.0009). DBT with 2DSM demonstrated superior visibility and diagnostic performance than FFDM in dense breasts. Conclusion DBT with 2DSM is superior to FFDM in terms of total diagnostic accuracy and lesion visibility for benign microcalcifications in dense breasts. This study suggests a promising role for DBT with 2DSM as an accommodating tool for stereotactic biopsy in female with dense breasts and suspicious breast microcalcifications.

Patterns in the Use and Perception of Digital Breast Tomosynthesis: A Survey of Korean Breast Radiologists (디지털 유방 토모신테시스에 대한 국내 사용 현황과 인식에 관한 설문조사 연구)

  • Eun Young Chae;Joo Hee Cha;Hee Jung Shin;Woo Jung Choi;Jihye Kim;Sun Mi Kim;Hak Hee Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.83 no.6
    • /
    • pp.1327-1341
    • /
    • 2022
  • Purpose To evaluate the pattern of use and the perception of digital breast tomosynthesis (DBT) among Korean breast radiologists. Materials and Methods From March 22 to 29, 2021, an online survey comprising 27 questions was sent to members of the Korean Society of Breast Imaging. Questions related to practice characteristics, utilization and perception of DBT, and research interests. Results were analyzed based on factors using logistic regression. Results Overall, 120 of 257 members responded to the survey (response rate, 46.7%), 67 (55.8%) of whom reported using DBT. The overall satisfaction with DBT was 3.31 (1-5 scale). The most-cited DBT advantages were decreased recall rate (55.8%), increased lesion conspicuity (48.3%), and increased cancer detection (45.8%). The most-cited DBT disadvantages were extra cost for patients (46.7%), insufficient calcification characterization (43.3%), insufficient improvement in diagnostic performance (39.2%), and radiation dose (35.8%). Radiologists reported increased storage requirements and interpretation time for barriers to implementing DBT. Conclusion Further improvement of DBT techniques reflecting feedback from the user's perspective will help increase the acceptance of DBT in Korea.

Suggestion of The Manual Exposure Condition Guideline for Reducing Patient Dose in Digital Breast Tomosynthesis (디지털 유방단층촬영의 피폭선량 경감을 위한 수동 촬영조건의 가이드라인 제시)

  • Hong, Eun-Ae;Lee, In-Ja
    • Journal of radiological science and technology
    • /
    • v.39 no.4
    • /
    • pp.483-491
    • /
    • 2016
  • The conditions after exposure to digital mammography and digital breast tomosynthesis were analyzed. The examinations for the ACR phantom were done using manual exposure, not auto exposure, to examine image discrimination and patient dose. As a result, the following results were derived: In the CC exposure, the kVp was 2kVp higher while mAs decreased to 58.6% for the 3D tomography. Such result showed an approximate decrease of 60mAs. At that time, the patients' Average Glandular Dose (AGD) was 1.65mGy in 2D and 1.87mGy in 3D; thus, AGD of 3D was shown to have about 1.13times higher. The result of the manual exposure revealed a reduced mAs of up to 80%; there was no effect in the assessment standard in terms of image discrimination, resulting in more than 10 points. When mAs was reduced to 80% in the manual exposure for ACR phantom, AGD was decreased to 0.66mGy. The diagnostic values of images were maintained and patients dose was reduced in the manual exposure in the AEC condition for 3D. Since the use of 3D has recently increased, using the manual exposure has been recommended in this study to improve the diagnostic value, while, simultaneously reducing patients dose.

A Numerical Voxel Model for 3D-printed Uncompressed Breast Phantoms (3D 프린팅 비압박 유방 팬텀 제작을 위한 복셀 기반 수치 모델에 관한 연구)

  • Youn, Hanbean;Baek, Cheol Ha;Jeon, Hosang;Kim, Jinsung;Nam, Jiho;Lee, Jayoung;Lee, Juhye;Park, Dahl;Kim, Wontaek;Ki, Yongkan;Kim, Donghyun;Won, Jong Hun;Kim, Ho Kyung
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.3
    • /
    • pp.116-122
    • /
    • 2017
  • Physical breast phantoms would be useful for the development of a dedicated breast computed tomography (BCT) system and its optimization. While the conventional breast phantoms are available in compressed forms, which are appropriate for the mammography and digital tomosynthesis, however, the BCT requires phantoms in uncompressed forms. Although simple cylindrical plastic phantoms can be used for the development of the BCT system, they will not replace the roles of uncompressed phantoms describing breast anatomies for a better study of the BCT. In this study, we have designed a numerical voxel breast phantom accounting for the random nature of breast anatomies and applied it to the 3D printer to fabricate the uncompressed anthropomorphic breast phantom. The numerical voxel phantom mainly consists of the external skin and internal anatomies, including the ductal networks, the glandular tissues, the Cooper's ligaments, and the adipose tissues. The voxel phantom is then converted into a surface data in the STL file format by using the marching cube algorithm. Using the STL file, we obtain the skin and the glandular tissue from the 3D printer, and then assemble them. The uncompressed breast phantom is completed by filling the remaining space with oil, which mimics the adipose tissues. Since the breast phantom developed in this study is completely software-generated, we can create readily anthropomorphic phantoms accounting for diverse human breast anatomies.