• Title/Summary/Keyword: Breast image

Search Result 289, Processing Time 0.026 seconds

MRI-Guided Breast Intervention: Biopsy and Needle Localization (자기공명영상 유도하 유방의 중재적시술: 조직생검술 및 침위치결정술)

  • Ga Eun Park;Jeongmin Lee;Bong Joo Kang;Sung Hun Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.84 no.2
    • /
    • pp.345-360
    • /
    • 2023
  • In Korea, the number of institutions providing breast MRI, as well as the number of breast MRIs, has recently increased. However, MRI-guided procedures, including biopsy and needle localization, are rarely performed compared to ultrasound-guided or stereotactic biopsy. As breast MRI has high sensitivity but limited specificity, lesions detected only on MRI require pathologic confirmation through MRI-guided biopsy or surgical excision with MRI-guided needle localization. Thus, we aimed to review MRI-guided procedures, including their indications, techniques, procedural considerations, and limitations.

Material Decomposition through Weighted Image Subtraction in Dual-energy Spectral Mammography with an Energy-resolved Photon-counting Detector using Monte Carlo Simulation (몬테카를로 시뮬레이션을 이용한 광자계수검출기 기반 이중에너지 스펙트럼 유방촬영에서 가중 영상 감산법을 통한 물질분리)

  • Eom, Jisoo;Kang, Sooncheol;Lee, Seungwan
    • Journal of radiological science and technology
    • /
    • v.40 no.3
    • /
    • pp.443-451
    • /
    • 2017
  • Mammography is commonly used for screening early breast cancer. However, mammographic images, which depend on the physical properties of breast components, are limited to provide information about whether a lesion is malignant or benign. Although a dual-energy subtraction technique decomposes a certain material from a mixture, it increases radiation dose and degrades the accuracy of material decomposition. In this study, we simulated a breast phantom using attenuation characteristics, and we proposed a technique to enable the accurate material decomposition by applying weighting factors for the dual-energy mammography based on a photon-counting detector using a Monte Carlo simulation tool. We also evaluated the contrast and noise of simulated breast images for validating the proposed technique. As a result, the contrast for a malignant tumor in the dual-energy weighted subtraction technique was 0.98 and 1.06 times similar than those in the general mammography and dual-energy subtraction techniques, respectively. However the contrast between malignant and benign tumors dramatically increased 13.54 times due to the low contrast of a benign tumor. Therefore, the proposed technique can increase the material decomposition accuracy for malignant tumor and improve the diagnostic accuracy of mammography.

Actual condition on accuracy control of mammography equipment in Kyeongsangbuk-do (경상북도 유방촬영장비의 정도관리에 대한 실태조사)

  • Kim, Sang-Jin;Ji, Tae-Jeong
    • Journal of radiological science and technology
    • /
    • v.29 no.1
    • /
    • pp.29-37
    • /
    • 2006
  • The breast cancer has the highest occurrence rate among the female cancers, and as the living style changes, the occurrence is increasing gradually. For the breast cancer test among women, who comprises up to 50% of the total population, the mammography is mainly used as the screening test, and the accuracy control is the most important aspect of the testing. Therefore this research divided the northern part of Kyeongsangbuk-do into 4 regions and investigated the accordance ratio of examination field and light examination field, the total focus using the optical density and compression rate, and the overall maintenance of mammography within the regions. The equipments of 11 hospitals were investigated, and the 7 hospitals passed the standard level of the accordance ratio of examination field. 6 hospitals passed the standard optical density, and 7 hospitals had the passing performance in the compression rate. Fibers, group of specks, and masses within the Mammographic Accreditation Phantom scored 10, being within the standard range. However, only 3 hospitals were equipped with private development processor and illumination. The result reflects the fact that the image quality of breast is not correctly being maintained. Moreover, only 27.27% satisfied all the three categories of compression fitting, accordance ratio of examination field, and phantom image evaluation at the same time. The accuracy control must be maintained more precisely for the accurate diagnosis of breast cancer.

  • PDF

Computer Assisted EPID Analysis of Breast Intrafractional and Interfractional Positioning Error (유방암 방사선치료에 있어 치료도중 및 분할치료 간 위치오차에 대한 전자포탈영상의 컴퓨터를 이용한 자동 분석)

  • Sohn Jason W.;Mansur David B.;Monroe James I.;Drzymala Robert E.;Jin Ho-Sang;Suh Tae-Suk;Dempsey James F.;Klein Eric E.
    • Progress in Medical Physics
    • /
    • v.17 no.1
    • /
    • pp.24-31
    • /
    • 2006
  • Automated analysis software was developed to measure the magnitude of the intrafractional and interfractional errors during breast radiation treatments. Error analysis results are important for determining suitable planning target volumes (PTV) prior to Implementing breast-conserving 3-D conformal radiation treatment (CRT). The electrical portal imaging device (EPID) used for this study was a Portal Vision LC250 liquid-filled ionization detector (fast frame-averaging mode, 1.4 frames per second, 256X256 pixels). Twelve patients were imaged for a minimum of 7 treatment days. During each treatment day, an average of 8 to 9 images per field were acquired (dose rate of 400 MU/minute). We developed automated image analysis software to quantitatively analyze 2,931 images (encompassing 720 measurements). Standard deviations ($\sigma$) of intrafractional (breathing motion) and intefractional (setup uncertainty) errors were calculated. The PTV margin to include the clinical target volume (CTV) with 95% confidence level was calculated as $2\;(1.96\;{\sigma})$. To compensate for intra-fractional error (mainly due to breathing motion) the required PTV margin ranged from 2 mm to 4 mm. However, PTV margins compensating for intefractional error ranged from 7 mm to 31 mm. The total average error observed for 12 patients was 17 mm. The intefractional setup error ranged from 2 to 15 times larger than intrafractional errors associated with breathing motion. Prior to 3-D conformal radiation treatment or IMRT breast treatment, the magnitude of setup errors must be measured and properly incorporated into the PTV. To reduce large PTVs for breast IMRT or 3-D CRT, an image-guided system would be extremely valuable, if not required. EPID systems should incorporate automated analysis software as described in this report to process and take advantage of the large numbers of EPID images available for error analysis which will help Individual clinics arrive at an appropriate PTV for their practice. Such systems can also provide valuable patient monitoring information with minimal effort.

  • PDF

Study of the Optimize Radiotherapy Treatment Planning (RTP) Techniques in Patients with Early Breast Cancer; Inter-comparison of 2D and 3D (3DCRT, IMRT) Delivery Techniques (유방암 방사선치료 시 최적의 방사선치료계획기법에 대한 고찰)

  • Kim, Young-Bum;Lee, Sang-Rok;Chung, Se-Young;Kwon, Young-Ho
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.18 no.1
    • /
    • pp.35-41
    • /
    • 2006
  • Purpose: A various find of radiotherapy treatment plans have been made to determine appropriate doses for breasts, chest walls and loco-regional lymphatics in the radiotherapy of breast cancers. The aim of this study was to evaluate the optimum radiotherapy plan technique method by analyzing dose distributions qualitatively and quantitatively. Materials and Methods: To evaluate the optimum breast cancer radiotherapy plan technique, the traditional method(two dimensional method) and computed tomography image are adopted to get breast volume, and they are compared with the three-dimensional conformal radiography (3DCRT) and the intensity modulated radiotherapy (IMRT). For this, the regions of interest (ROI) such as breasts, chest walls, loco-regional lymphatics and lungs were marked on the humanoid phantom, and the computed tomography(Volume, Siemens, USA) was conducted. Using the computed tomography image obtained, radiotherapy treatment plans (XiO 5.2.1, FOCUS, USA) were made and compared with the traditional methods by applying 3DCRT and IMRT. The comparison and analysis were made by analyzing and conducting radiation dose distribution and dose-volume histogram (DVH) based upon radiotherapy techniques (2D, 3DCRT, IMRT) and point doses for the regions of interest. Again, treatment efficiency was evaluated based upon time-labor. Results: It was found that the case of using 3DCRT plan techniques by getting breast volume is more useful than the traditional methods in terms of tumor delineation, beam direction and confirmation of field boundary. Conclusion: It was possible to present the optimum radiotherapy plan techniques through qualitative and quantitative analyses based upon radiotherapy plan techniques in case of breast cancer radiotherapy. However, further studies are required for the problems with patient setup reproducibility arising from the difficulties of planning target volume (PVT) and breast immobilization in case of three-dimensional radiotherapy planning.

  • PDF

White striping degree assessment using computer vision system and consumer acceptance test

  • Kato, Talita;Mastelini, Saulo Martiello;Campos, Gabriel Fillipe Centini;Barbon, Ana Paula Ayub da Costa;Prudencio, Sandra Helena;Shimokomaki, Massami;Soares, Adriana Lourenco;Barbon, Sylvio Jr.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.7
    • /
    • pp.1015-1026
    • /
    • 2019
  • Objective: The objective of this study was to evaluate three different degrees of white striping (WS) addressing their automatic assessment and customer acceptance. The WS classification was performed based on a computer vision system (CVS), exploring different machine learning (ML) algorithms and the most important image features. Moreover, it was verified by consumer acceptance and purchase intent. Methods: The samples for image analysis were classified by trained specialists, according to severity degrees regarding visual and firmness aspects. Samples were obtained with a digital camera, and 25 features were extracted from these images. ML algorithms were applied aiming to induce a model capable of classifying the samples into three severity degrees. In addition, two sensory analyses were performed: 75 samples properly grilled were used for the first sensory test, and 9 photos for the second. All tests were performed using a 10-cm hybrid hedonic scale (acceptance test) and a 5-point scale (purchase intention). Results: The information gain metric ranked 13 attributes. However, just one type of image feature was not enough to describe the phenomenon. The classification models support vector machine, fuzzy-W, and random forest showed the best results with similar general accuracy (86.4%). The worst performance was obtained by multilayer perceptron (70.9%) with the high error rate in normal (NORM) sample predictions. The sensory analysis of acceptance verified that WS myopathy negatively affects the texture of the broiler breast fillets when grilled and the appearance attribute of the raw samples, which influenced the purchase intention scores of raw samples. Conclusion: The proposed system has proved to be adequate (fast and accurate) for the classification of WS samples. The sensory analysis of acceptance showed that WS myopathy negatively affects the tenderness of the broiler breast fillets when grilled, while the appearance attribute of the raw samples eventually influenced purchase intentions.

The comparison of lesion localization methods in breast lymphoscintigraphy (Breast lymphoscintigraphy 검사 시 체표윤곽을 나타내는 방법의 비교)

  • Yeon, Joon ho;Hong, Gun chul;Kim, Soo yung;Choi, Sung wook
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.19 no.2
    • /
    • pp.74-80
    • /
    • 2015
  • Purpose Breast lymphoscintigraphy is an important technique to present for body surface precisely, which shows a lymph node metastasis of malignant tumors at an early stage and is performed before and after surgery in patients with breast cancer. In this study, we evaluated several methods of body outline imaging to present exact location of lesions, as well as compared respective exposure doses. Materials and Methods RANDO phantom and SYMBIA T-16 were used for obtaining imaging. A lesion and an injection site were created by inserting a point source of 0.11 MBq on the axillary sentinel lymph node and 37 MBq on the right breast, respectively. The first method for acquiring the image was used by drawing the body surface of phantom for 30 sec using $Na^{99m}TcO_4$ as a point source. The second, the image was acquired with $^{57}Co$ flood source for 30 seconds on the rear side and the left side of the phantom, the image as the third method was obtained using a syringe filled with 37 MBq of $Na^{99m}TcO_4$ in 10 ml of saline, and as the fourth, we used a photon energy and scatter energy of $^{99m}Tc$ emitting from phantom without any addition radiation exposure. Finally, the image was fused the scout image and the basal image of SPECT/CT using MATLAB$^{(R)}$ program. Anterior and lateral images were acquired for 3 min, and radiation exposure was measured by the personal exposure dosimeter. We conducted preference of 10 images from nuclear medicine doctors by the survey. Results TBR values of anterior and right image in the first to fifth method were 334.9 and 117.2 ($1^{st}$), 266.1 and 124.4 ($2^{nd}$), 117.4 and 99.6 ($3^{rd}$), 3.2 and 7.6 ($4^{th}$), and 565.6 and 141.8 ($5^{th}$). And also exposure doses of these method were 2, 2, 2, 0, and $30{\mu}Sv$, respectively. Among five methods, the fifth method showed the highest TBR value as well as exposure dose, where as the fourth method showed the lowest TBR value and exposure dose. As a result, the last method ($5^{th}$) is the best method and the fourth method is the worst method in this study. Conclusion Scout method of SPECT/CT can be useful that provides the best values of TBR and the best score of survey result. Even though personal exposure dose when patients take scout of SPECT/CT was higher than another scan, it was slight level comparison to 1 mSv as the dose limit to non-radiation workers. If the scout is possible to less than 80 kV, exposure dose can be reduced, and also useful lesion localization provided.

  • PDF

A Preoperative Marking Template for Deep Inferior Epigastric Artery Perforator Flap Perforators in Breast Reconstruction

  • Miranda, Benjamin H.;Pywell, Matthew;Floyd, David
    • Archives of Plastic Surgery
    • /
    • v.41 no.2
    • /
    • pp.171-173
    • /
    • 2014
  • Preoperative perforator marking for deep inferior epigastric artery perforator flaps is vital to the success of the procedure in breast reconstruction. Advances in imaging have facilitated accurate identification and preselection of potentially useful perforators. However, the reported imaging accuracy may be lost when preoperatively marking the patient, due to 'mapping errors', as this relies on the use of 2 reported vectors from a landmark such as the umbilicus. Observation errors have been encountered where inaccurate perforator vector measurements have been reported in relation to the umbilicus. Transcription errors have been noted where confusing and wordy reports have been typed or where incorrect units have been given (millimetres vs. centimetres). Interpretation errors have also occurred when using the report for preoperative marking. Furthermore, the marking process may be unnecessarily time-consuming. We describe a bespoke template, created using an individual computed tomography angiography image, that increases the efficiency and accuracy of preoperative marking. The template is created to scale, is individually tailored to the patient, and is particularly useful in cases where multiple potential suitable perforators exist.

Differential imaging diagnosis of a swelling after extraction in a breast cancer patient with radiotherapy and chemotherapy (방사선치료와 화학요법을 받은 유방암 환자에서 발생한 발치 후 종창의 진단영상학적 감별 진단)

  • Huh Kyung-Hoe;An Byung-Mo;Kim Mi-Ja;Park Kwan-Soo;Heo Min-Suk
    • Imaging Science in Dentistry
    • /
    • v.36 no.3
    • /
    • pp.163-168
    • /
    • 2006
  • A 60-year-old female, who complained of delayed healing and swelling after extraction of left lower second molar during chemotherapy, visited our department. She had a history of a resection surgery of breast cancer and postoperative radiotherapy. The conventional radiographs showed diffuse permeative bone destruction in posterior mandibular body, which gave the first radiologic impression of osteonecrosis associated with radiotherapy or chemotherapy. And bone metastasis from the breast cancer was also considered in the differential diagnosis. On the enhanced computed tomography (ECT) the posterior mandibular body was occupied by a large expansile lesion showing central low attenuation with peripheral rim enhancement. Magnetic resonance images revealed that the low attenuated area on ECT did not show as high signal intensity as water on T2 weighted image and indicated solid component of a tumor. The final diagnosis was central squamous cell carcinoma. We present the diagnostic imaging features of the patient with special emphasis on the differential diagnosis.

  • PDF

Study on the Usefulness about Molecular Breast Imaging In Dense Breast (치밀형 유방에서 Molecular Breast Imaging 검사의 유용성에 관한 고찰)

  • Baek, Song Ee;Kang, Chun Goo;Lee, Han Wool;Park, Min Soo;Choi, Young Sook;Kim, Jae Sam
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.20 no.1
    • /
    • pp.42-46
    • /
    • 2016
  • Purpose Mammography is the most widely used scan for the early diagnosis since it is possible to observe the anatomy of the breast. however, The sensitivity is markedly reduced in high-risk patients with dense breast. Molecular Breast Imaging (MBI) sacn is possible to get the high resolution functional imaging, and This new neclear medicine technique get the more improved diagnostic information through It is useful for confirmation of tumor's location in dense breast. The purpose of this study is to evaluate the usefulness of MBI for tumor diagnosis in patients with dense breast. Materials and Methods We investigated 10 patients female breast cancer with dense breast type who had visited the hospital from September 1st to Octorber 10th, 2015. The patients underwent both MBI and Mammography. MBI (Discovery 750B; General Electric Healthcare, USA) scan was 99mTc-MIBI injected with 20 mCi on the opposite side of the arm with the lesions, after 20 minutes, gained bilateral breast CC (CranioCaudal), MLO (Medio Lateral Oblique) View. Mammography was also conducted in the same posture. MBI and Mammography images were compared to evaluate the sensitivity and specificity of each case utilizing both image and two images in blind tests. Results The results of the blind test for breast cancer showed that the sensitivity of Mammography, MBI scan was 63%, 89%, respectively, and that their specificity was 38%, 87%, respectively. Using both the Mammography and MBI scan was Sensitivity 92%, specificity 90%. Conclusion This research has found that, The tumor of dense tissue that can not easily distinguishable in Mammography is possible to more accurate diagnosis since It is easy to visually evaluation. But MBI sacn has difficulty imaging microcalcificatons, If used in conjunction with mammography it is thought to give provide more diagnostic information.

  • PDF