• Title/Summary/Keyword: Breakup regime

Search Result 12, Processing Time 0.021 seconds

Breakup Characteristics of Liquid Sheets Formed by Impinging Jets in High Pressure Environments (고압분위기에서 충돌제트로 형성되는 액막의 분열특성)

  • Jung, Ki-Hoon;Khil, Tea-Ock;Lim, Byoung-Jik;Yoon, Young-Bin
    • Journal of ILASS-Korea
    • /
    • v.9 no.4
    • /
    • pp.1-8
    • /
    • 2004
  • Breakup characteristics of liquid sheets formed by the impingement of two water jets, such as a breakup length and a breakup wavelength of sheet, were investigated as increasing the injection velocity up to 30m/s and the ambient gas pressure up to 4.0MPa. While round edged orifices formed a laminar sheet which has no waves on the sheet when the injection velocity is low, sharp edged orifices formed a turbulent sheet which has impact waves irrespective of the injection velocity. Thus we compared the differences of breakup characteristics between them. The results showed that the aerodynamic force significantly affects the breakup of laminar sheet when the gas based Weber number is higher than unity, It was also found that the turbulent sheets have three breakup regimes, i.e. expansion regime, wave breakup regime and catastrophic breakup regime according to the gas based Weber number.

  • PDF

Breakup Characteristics of Laminar and Turbulent Liquid Sheets Formed by Impinging Jets in High Pressure Environments

  • Jung, K.;Khil, T.;Lim, B.;Yoon, Y.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.173-179
    • /
    • 2004
  • Breakup characteristics of liquid sheets formed by the impingement of two water jets, such as a breakup length and a breakup wavelength of sheet, were investigated as increasing the injection velocity up to 30m/s and the ambient gas pressure up to 4.0㎫. While round edged orifices formed a laminar sheet which has no waves on the sheet when the injection velocity is low, sharp edged orifices formed a turbulent sheet which has impact waves irrespective of the injection velocity. Thus we compared the differences of breakup characteristics between them. The results showed that the aerodynamic force significantly affects the breakup of laminar sheet when the gas based Weber number is higher than unity. It was also found that the turbulent sheets have three breakup regimes, i.e. expansion regime, wave breakup regime and catastrophic breakup regime according to the gas based Weber number.

  • PDF

Experimental Investigation on the Breakup Characteristics of Various Fuels in air Cross-flow Condition (연료 물성에 따른 횡단 유동장 내의 액적 분열 특성에 관한 실험적 연구)

  • Kim, Sa-Yop;Lee, Keun-Hee;Lee, Chang-Sik
    • Journal of ILASS-Korea
    • /
    • v.12 no.3
    • /
    • pp.160-165
    • /
    • 2007
  • In this study, the breakup characteristics of mono disperse droplets were studied with various fuels, ethanol, diesel fuel, biodiesel fuel extracted from soybean oil, and pure water. In order to investigate the droplet behavior in air cross-flow conditions, the experimental equipment was composed of a droplet generator with an air nozzle, and a high-magnification photo detecting system. Droplets produced by the droplet generator were injected into the air stream flowing normal to a direction of liquid drop jet. Digital images of the droplet behavior in air flow field were recorded by controlling the air flow rate. From the inspections, droplet breakup mechanism is primarily classified into the two kinds of stage, first breakup stage and second breakup stage. At the first breakup stage, droplet deformation rate seems to be affected by the force induced by the surface tension and the viscosity. On the other hand, at the second breakup stage, droplet is broken up mainly induced by the surface tension, so the breakup transition can be divided by the regular Weber number.

  • PDF

Correlations of Trajectory and Break-up Point for Liquid Jet Injected into Low Speed Cross-flow (저속 횡단유동장에 분사된 액체제트의 분무궤적 및 분열점에 대한 상관관계식)

  • Kim, Jong-Hyun;Lee, Bong-Soo;Koo, Ja-Ye
    • Journal of ILASS-Korea
    • /
    • v.13 no.2
    • /
    • pp.79-84
    • /
    • 2008
  • The correlations for cross-flow have not been well established, because of the complexity of breakup and atomization mechanism. A study was performed to investigate the characteristics of spray behaviour of liquid jet in the bag breakup regime injected into low-speed cross-flow with the pressure single-hole nozzle. The shadow-graphy method was used for the cross-flow jet visualization. The experimental variables of liquid jet were nozzle diameter $(0.3mm{\sim}1.0mm)$, injection pressure $(50kPa{\sim}150kPa)$, and the velocity of cross-flow $(27m/s{\sim}42m/s)$. The highest penetration trajectories of liquid jet are governed by the momentum ratio $({\rho}_{\iota}U_{\iota}^2/{\rho}_aU_{cross}^2)$ rather than the Weber number and the new empirical equations of the highest penetration trajectory and breakup point at low-speed corss-flow are established.

  • PDF

Recent Progress of Spray-Wall Interaction Research

  • Lee Sang-Yong;Ryu Sung-Uk
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1101-1117
    • /
    • 2006
  • In the present article, recent progress of spray-wall interaction research has been reviewed. Studies on the spray-wall interaction phenomena can be categorized mainly into three groups: experiments on single drop impact and spray (multiple-drop) impingement, and development of comprehensive models. The criteria of wall-impingement regimes (i.e., stick, rebound, spread, splash, boiling induced breakup, breakup, and rebound with breakup) and the post-impingement characteristics (mostly for splash and rebound) are the main subjects of the single-drop impingement studies. Experimental studies on spray-wall impingement phenomena cover examination of the outline shape and internal structure of a spray after the wall impact. Various prediction models for the spray-wall impingement phenomena have been developed based on the experiments on the single drop impact and the spray impingement. In the present article, details on the wall-impingement criteria and post-impingement characteristics of single drops, external and internal structures of the spray after the wall impact, and their prediction models are reviewed.

The Study on the Spray Characteristics of Supercritical Spray (초임계상태 분무의 분무 특성에 관한 연구)

  • Park, C.J.
    • Journal of ILASS-Korea
    • /
    • v.4 no.3
    • /
    • pp.8-14
    • /
    • 1999
  • The characteristics of the breakup process in supercritical spray is investigated during the injection of supercritical sulfur hexafluoride into dissimilar gases at supercritical pressures and subcritical temperature of the injected fluid. The visualization techniques used are backlighting and shadowgraph methods. The spray angles are measured and the breakup and mixing process are observed at near and supercritical conditions. The results show that spray angles are decreased with the in..ease of the ratio of density $(\frac{\rho_f}{\rho_g})$. At the supercritical temperature, the spray angles in atomization region are kept nearly constant such as the typical spray angle in gas injection. The mixing process is changed radically at the temperature where $\frac{d\rho}{dT}=\frac{1}{2}[\frac{d\rho}{dT}]_{max}$ at given pressure.

  • PDF

Incorporation of Droplet Breakup Model at Spacer Grid into RELAP5/ MOD2 (핵 연료봉 지지격자에 의한 Droplet Breakup Model의 RELAP5 / MOD2 삽입)

  • Park, Jong-Ho;Lee, Sang-Yong;Kim, Si-Hwan;Chang, Soon-Heung
    • Nuclear Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.326-336
    • /
    • 1990
  • Recent experiments show the existence of spacer grid improves the heat removal from the fuel rods during the reflood phase of LOCA. The local heat transfer within and downstream of the grid is increased due to the earlier quenching than rod surface, shattering of the entrained droplets into smaller ones which can be more easily evaporated and enhanced turbulent effect. Therefore, the consideration of these phenomena is necessary for the DFFB regime which prevails above the water level during the reflood. In this paper, droplet breakup model at spacer grid has been developed and incorporated into RELAP5/MOD2. Verification calculations are carried out for FEBA tests which examine the thermalhydraulic performance of grid spacer during reflood.

  • PDF

Identification of Internal Flow Pattern in Effervescent Atomizers (기체주입노즐의 내부유동양식의 구분)

  • Kim, Joo-Youn;Lee, Sang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.2
    • /
    • pp.306-315
    • /
    • 2000
  • An experimental study was conducted to examine the internal flow patterns inside the mixing chamber of effervescent atomizers. The mixing chamber has the rectangular cross section ($8mm{\times}2mm$) and made of transparent acrylic plate for flow visualization. The parameters tested were the air/liquid ratio (ALR), injection. pressure, and the nozzle orifice diameter. Three different flow regimes were observed; bubbly, annular, and intermittent flows. In the bubbly flow regime, the discharged mixture was disintegrated into drops through the bubble expansion and the ligament breakup. On the other hand, in the annular flow regime, the liquid annulus was disintegrated into small drops by the aerodynamic interaction between the phases due to the high relative velocities between the gas and the liquid. In the intermittent flow regime, the bubble-expansion/ligament-disintegration mode and the annulus-disintegration mode appeared alternatively. The correlations representing the transition criteria between the two-phase flow patterns within the mixing chamber were proposed based on the drift-flux models.

Study on Breakup Characteristics of Gel Propellant Using Pressure Swirl Injector (압력선회형 인젝터를 이용한 젤 추진제의 분열특성 연구)

  • Cho, Janghee;Lee, Donghee;Kim, Sulhee;Lee, Donggeun;Moon, Heejang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.5
    • /
    • pp.10-17
    • /
    • 2021
  • In this study, cold-flow test of simulant gel is conducted using a pressure swirl injector to identify spray characteristics according to gellant weight percent. Experiment results show the aircore is developed locally at the nozzle and expanded to the entire swirl chamber as the supply pressure increases. The aircore formation of simulant gel showed no significant difference compared to Newtonian fluid. The spray pattern was classified into four distinct shapes where relationship between the breakup regimes and dimensionless numbers were investigated. In the future, additional study is necessary to understand the aircore formation mechanism, stability and spray characteristics at different configuration of the swirl chamber shape.

A Study on the Behavior of a Droplet Impacting onto a Heated Surface (고온 벽면과 충돌하는 단일 액적의 거동에 관한 연구)

  • Kang, Bo-Seon;Lee, Dong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.7
    • /
    • pp.871-880
    • /
    • 1999
  • In this paper an experimental study is presented of the problem of dynamic behavior of a water droplet impinging upon a heated surface. The experiments are mainly focused on the effects of impinging angle of a droplet and surface temperature on the impact dynamics of the droplet. It Is clarified that the droplet exhibits much different behavior depending on the normal momentum of an impinging droplet before impact. At surface temperature In the nucleate boiling regime. the disintegration of a droplet doesn't occur, whereas the deforming droplet adheres to the surface. The spreading and contraction of the liquid film is repeated a couple of times for the horizontal surface but the expanded droplet just slips without noticeable contraction for the inclined surfaces. In the film boiling regime, the impinging droplet spreads over the surface as a liquid film which is separated from the surface by produced vapor. Depending on the magnitude of the normal momentum of the droplet the disintegration into the several irregular shapes of liquid elements occurs for the horizontal and 30o-inclined surfaces, whereas the impinging droplet for the 60o-inclined surface doesn't break up and tends to recover the original spherical shape.