• 제목/요약/키워드: Breakup point

검색결과 29건 처리시간 0.024초

A Study on the Characteristics of an Oscillating Fluidic Atomizer

  • Kim, K.H.;Kiger, K.;Lee, W.
    • 한국분무공학회지
    • /
    • 제11권2호
    • /
    • pp.105-112
    • /
    • 2006
  • A unique feature of fluidic atomizers is that the nozzle geometry produces a thin capillary Jet which is forced to oscillate on a 2-dimensional plane through the use of a passive feedback mechanism. The objective of the current work is to characterize the influence of the stagnation pressure at the nozzle exit, jet oscillation and stretching on the breakup properties of the capillary ligament. To achieve this, shadow graph technique is used to measure size, shape, velocity and the number density of the droplets as a function of the position within the spray fan. The breakup length, defined as the radial distance from the breakup point, is analyzed as a function of the non-dimensional parameters. Finally, a kinematic model is developed to simulate the breakup of the oscillating jets at low stagnation pressures. Using the existing jet breakup theories, the model is used to predict the size and diameter distribution of the droplets after primary atomization.

  • PDF

횡단가스 유동에 분사되는 액체제트의 분무특성 (Characteristic of Liquid Jet in Subsonic Cross-flow)

  • 고정빈;이관형;구자예
    • 한국분무공학회지
    • /
    • 제10권1호
    • /
    • pp.35-42
    • /
    • 2005
  • The present study has numerically and experimentally investigated the spray behavior of liquid jet injected in subsonic cross-flow. The corresponding spray characteristics are correlated with jet operating parameters. The spray dynamics are known to be distinctly different in the three regimes: the column, the ligament and the droplet regimes. The behaviors of column, penetration and breakup of liquid jet have been studied. Numerical and physical models are base on a modified KIVA code. The primary atomization is represented by a wave model base on the KH(Kelvin-Helmholtz) instability that is generated by a high interface relative velocity between the liquid and gas flows. In odor to capture the spray trajectory, CCD camera has been utilized. Numerical and experimental results indicate that the breakup point is delayed by increasing gas momentum ratio and the penetration decreases by increasing Weber number.

  • PDF

횡단유동이 액체 미립화에 미치는 영향 (The Effect of Cross-flow on Liquid Atomization)

  • 김종현;조우진;이인철;이봉수;구자예
    • 한국자동차공학회논문집
    • /
    • 제16권2호
    • /
    • pp.87-92
    • /
    • 2008
  • The breakup processes and spray plume characteristics of liquid jets injected in subsonic air cross-flows were experimentally studied. The behaviors of column, penetration, breakup of plain liquid jet and droplet sizes, velocities have been studied in non-swirling cross-flow of air. Nozzle has a 1.0 mm diameter and Lid ratio=5. Experimental results indicate that the breakup point is delayed by increasing air momentum, the penetration decreases by increasing Weber number and the split angle is increased by increasing air velocity or decreasing injection velocity. SMD increases according as increasing height or decreases in accordance with increasing air velocity. This phenomenon is related to the momentum exchange between column waves and cross-flow stream. Droplet vector velocities were varied from 11.5 to 33 m/s. A higher-velocity region can be identified in down edge region at Z/d=40, 70 and 100. Lower-velocity region were observed on bottom position of the spray plume.

회전원판 분무기의 액체미립화 특성에 관한 실험적 연구 (An Experimental Study on the Characteristics of Liquid Atomization in a Rotating Disk Atomizer)

  • 임종한;윤준규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권6호
    • /
    • pp.672-680
    • /
    • 2007
  • Apparatus of rotating disk and cup are widely used spray paintings and industrial boilers. This study was conducted experimentally to investigate the characteristics of liquid atomization in a rotating disk atomizer by means of viscous liquid mixed water and glycerin. The Purpose of this study are to observe breakup mechanism according to the variation of supplied flow rate $0.4{\sim}30 cm^3/s$ and rotating speed $200{\sim}4000rpm$, and to investigate three kinds of breakup Pattern such as drop ligament and film formation by comparing the transition flow rate. ligament number and ligament length to those of Tanasawa and Matsumoto's empirical formula. The results are as follows ; The higher it makes use of viscous liquid. the better it get the characteristics of breakup mechanism. Also When I compared practical value with experiential value at similar test conditions. it was shown similar tendency though were a little variation.

횡단류를 이용한 액체제트의 분무 및 분열 특성 실험 (Experimental Study of Spray Characteristics of Liquid jet in Cross-flow)

  • 고정빈;이관형;문희장;구자예
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2005년도 제24회 춘계학술대회논문집
    • /
    • pp.155-158
    • /
    • 2005
  • The spray characteristics of liquid jet minted in subsonic cross-flow were investigated numerically and experimentally. The behaviors of column, penetration and breakup of plain liquid jet in non-swirling cross-flow of air have been studied. Numerical and physical models are based on a modified KIVAII code. The primary atomization is represented by a wave model based on the KH(Kelvin-Helmholtz) instability that is generated by a high interface relative velocity between the liquid and gas flows. CCD camera has been utilized in oder to capture the spray trajectory. The nozzle diameter was 0.5 mm and its L/D ratios were between 1 and 5. Numerical and experimental results indicate that the breakup point is delayed by increasing gas momentum ratio, the penetration decreases by increasing Weber number and the turbulent or nonturbulent liquid jet is obtained at different L/D ratio.

  • PDF

저속 횡단유동장에 분사된 액체제트의 분무궤적 및 분열점에 대한 상관관계식 (Correlations of Trajectory and Break-up Point for Liquid Jet Injected into Low Speed Cross-flow)

  • 김종현;이봉수;구자예
    • 한국분무공학회지
    • /
    • 제13권2호
    • /
    • pp.79-84
    • /
    • 2008
  • The correlations for cross-flow have not been well established, because of the complexity of breakup and atomization mechanism. A study was performed to investigate the characteristics of spray behaviour of liquid jet in the bag breakup regime injected into low-speed cross-flow with the pressure single-hole nozzle. The shadow-graphy method was used for the cross-flow jet visualization. The experimental variables of liquid jet were nozzle diameter $(0.3mm{\sim}1.0mm)$, injection pressure $(50kPa{\sim}150kPa)$, and the velocity of cross-flow $(27m/s{\sim}42m/s)$. The highest penetration trajectories of liquid jet are governed by the momentum ratio $({\rho}_{\iota}U_{\iota}^2/{\rho}_aU_{cross}^2)$ rather than the Weber number and the new empirical equations of the highest penetration trajectory and breakup point at low-speed corss-flow are established.

  • PDF

디지털 이미지 법을 이용한 가솔린 분무의 유동 특성에 관한 연구 (A Study on the Flow Characteristics of Gasoline Spray using Digital Image Processing)

  • 이창식;이기형;전문수;김영호
    • 한국자동차공학회논문집
    • /
    • 제6권4호
    • /
    • pp.219-227
    • /
    • 1998
  • This paper describes the fuel spray characteristics of gasoline port injectors such as the breakup procedures of liquid fuel, breakup and extinction behaviors of fuel spray at nozzle tip, time history of SMD and velocity distribution of fuel spray in the direction of fuel stream. Pintle-type gasoline fuel injector was used to analyze mentioned spray characteristics. In order to visualize the fuel spray behaviors and to measure the droplet mean diameter and velocities of spray droplets, the Schlieren method, digital image processing and auto-correlation PIV were applied in this study. In addition, the spray characteristics according to the variation of time were considered. The results of fuel spray show that the liquid sheet breakup starts at 10mm downstream actively. The flying time is approximately 4msec between 50mm and 80mm down the nozzle tip. Also, SMD of fuel spray, the number of droplets and fuel velocity distribution at each point of downstream are discussed.

  • PDF

드럼형 회전연료노즐의 미립화 기구 및 분무특성 연구 (The Atomization Mechanism and Spray Characteristics of Drum Type Rotary Atomizer)

  • 이동훈;최현경;최성만;유경원;허환일
    • 한국추진공학회지
    • /
    • 제12권2호
    • /
    • pp.57-65
    • /
    • 2008
  • 가스터빈엔진에 적용할 수 있는 드럼형 회전연료노즐의 모델링을 통해 원심력이 충분한 연료분사압력을 발생시킴을 보였고, 회전연료분사의 미립화 현상에 대해 실험적으로 연구하였다. 회전연료분사의 미립화기구 및 분무특성을 이해하기 위하여 고속 회전연료노존 시험리그를 이용하여 $5,000\;{\sim}\;40,000rpm$의 영역에서 분무가시화와 PDA를 이용한 분무액적 측정을 실시하여 회전연료분무의 미립화 특징을 규명하고, 미립화성능 향상을 위해서는 회전속도증가를 통해 액적분열시점을 앞당기는 것이 중요함을 알았다.

아음속 횡단 유동장으로 펄스 분사된 액체 제트의 분무특성 (Spray Characteristics of a Pulsed Liquid Jet into a Cross-flow of Air)

  • 이인철;변용우;구자예
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.61-64
    • /
    • 2008
  • The present study of these experiments are close examination of spray characteristics that are continuous liquid jet and modulated pressure pulse liquid jet. The experiments were conducted using water, over a range of cross-flow velocities from 42${\sim}$136 m/s, with injection frequencies of 35.7${\sim}$166.2 Hz. Between continuous cross-flow jet and pressure pulsed cross-flow jet for characteristics of penetration, breakup point, spray angle and macro spray shape are investigated experimentally. In cross-flow field, main parameter of liquid jet for breakup was cross-flow stream rather than pressure pulse frequency. As oscillation of the periodic pressure that could make liquid jet moved up and down, the mixing efficiency was increased. Also, a bulk of liquid jet puff was detected at upper field of liquid surface. So, this phenomenon has a good advantage of mixing spray from concentration of center area to outer area. Because of pressure pulsation frequency, an inclination of SMD for the structured layer was evanescent. Cross-sectional characteristics of SMD at downstream area were non-structured distributions. Then cross-sectional characteristics of SMD size were about same tendency over a range that is effect of spray mixing. The tendency of volume flux value for various frequency of pressure pulse was same distribution. And volume flux was decreased when the frequency of pressure pulse increase.

  • PDF

주파수 변조 분사가 횡단 유동장의 분무 특성에 미치는 영향 (Spray Characteristics of Modulated Liquid Jet Injected into a Subsonic Crossflow)

  • 이민철;김종현;구자예
    • 한국분무공학회지
    • /
    • 제14권2호
    • /
    • pp.59-64
    • /
    • 2009
  • These experiments are close examination of spray characteristics that are continuous liquid jet and modulated liquid jet. The experiments were conducted using water, over a range of crossflow velocities from $42{\sim}l36\;m/s$, with modulation frequencies of $35.7{\sim}166.2\;Hz$. Between continuous crossflow jet and modulated cross-flow jet of penetration, breakup point, spray angle and macro spray shape are experimentally investigated with image analysis. In cross-flow field, main parameter of liquid jet for breakup was cross-flow stream rather than modulation effect. As oscillation of the periodic pressure that could make liquid jet moved up and down, the mixing efficiency was increased. Also, a bulk of liquid jet puff was detected at upper field of liquid surface. So, this phenomenon has a good advantage of mixing spray from concentration of center area to outer area. Because of modulation frequency, SMD inclination of the structured layer was evanescent. Cross-sectional characteristics of SMD at downstream area were non-structured distributions. Then cross-sectional characteristics of SMD size were about same tendency over a range that is effect of spray mixing. The tendency of volume flux value for various modulation frequency was same distribution. And volume flux was decreased when the modulation frequency increase.

  • PDF