• Title/Summary/Keyword: Breaker disk

Search Result 2, Processing Time 0.019 seconds

Friction Characteristics for Construction thermal insulation manufacturing system Breaker (건축단열재 생산시스템 브레이커 마찰특성)

  • Son, Jae-Hwan;Kang, Hae-Dong;Noh, Kyoo-Ik;Suk, Jang-Geun;Choi, Won-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.6
    • /
    • pp.61-65
    • /
    • 2014
  • Construction heat insulating material for construction is used in large amounts in industry. In the manufacturing process of this insulation material, a thermal insulation material is completed while a polymer in a liquid state passes through Hall breaker. At this time, the quality and form of a product are determined by a hole in the breaker according to the oil pressure of the fluid and the change of the flow velocity. The friction wear action with regard to partner movement between the two levels of quality of materials affects the performance and the lifetimes of machine parts. In this study of a friction test, SM45C, which is a material used to create brake holes, was used. PVC was used to create the specimen. Moreover, an experiment divided a lubricous state and an unlubricated condition. The resulting value over the load of a pin, the revolving speed of a disk, and the standby state of an experimental result disk could be acquired.

Effect of Hydraulic Pressure on Bubble Dissolution Rate of Ejector Type Microbubble Generator (수압이 자흡식 마이크로버블 발생장치의 산소 용해율에 미치는 영향)

  • Kim, Hyun-Sik;Lim, Ji-Young;Park, Soo-Young;Kim, Jin-Han
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.2
    • /
    • pp.27-31
    • /
    • 2017
  • This study was performed to estimate bubble dissolution rate by change of hydraulic pressure according to increase of water depth. Experimental results showed that airflow rate was decreased by increase of hydraulic pressure. Because the force which acts on outlet of nozzle was increased by increase of hydraulic pressure. Mass-transfer coefficient decreased with decreasing airflow rate and increasing effective volume due to increase of hydraulic pressure as water depth increased. On the contrary, as the water depth increased, the bubble dissolution rate was increased because longer residence time of microbubble which was generated by ejector type microbubble generator. However it was thought that if water depth for capacity of ejector type microbubble generator is excessively increasing, bubble dissolution rate would be reduced due to low airflow rate and mass-transfer coefficient. Therefore, it is importance to consider the water depth when operating ejector type microbubble generator.