• Title/Summary/Keyword: Brazing technology

Search Result 105, Processing Time 0.025 seconds

Research for Solder Paste in Metallic Glass System for Thermoelectric Modules (고온열전모듈용 금속유리계 페이스트 연구)

  • Seo, Seung-Ho;Son, Geun Sik;Seo, Kang Hyun;Choi, Soon-Mok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.4
    • /
    • pp.249-254
    • /
    • 2018
  • We researched about a bulk metallic glass system as an additive to an Ag paste for high temperature thermoelectric modules. Bulk metallic glass (BMG) ribbons were produced by using a rapid solidification process (RSP) under a cooling rate condition higher than $10^{\circ}C/sec$. We investigated BMG characteristics of the ribbons by means of x-ray diffraction (XRD) and differential scanning calorimetry (DSC) in order to evaluate the glass transition temperature ($T_g$) and the recrystallization temperature ($T_x$) lower than $400^{\circ}C$. A milling process was also developed to apply the BMG ribbons to a commercial Al paste as an additive for lower sintering temperature.

Butterfly type 광패키지의 제작 및 특성 평가

  • 조현민;유찬세;강남기;이승익;한기우;유명기
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2001.11a
    • /
    • pp.111-114
    • /
    • 2001
  • Optical transmitter and receiver are the essential components for optical communication. For these components, butterfly type packages are used which are comprised of metal housing, multilayer ceramic inserts, lead and window. In this study, 2.5 Gbps DFB(Distributed -Feedback) LD(Laser Diode) package was fabricated and characterized. Metal housing showed good thermal conductivity (200W/mK) and well matched TCE(6.7ppm/K) with GaAs chip. Ceramic inserts also showed good VSWR(Voltage Standing Wave Ratio) characteristics(<2.0). By brazing technology, all the elements were combined and sealed. RF characteristics of the package mounted on the PWB was also tested.

  • PDF

Finite Element Analysis of Induction Heating Process for Development of Rapid Mold Heating System (급속 금형가열 시스템 개발을 위한 고주파 유도가열 과정의 유한요소해석)

  • Hwang, J.J.;Kwon, O.K.;Yun, J.H.;Park, K.
    • Transactions of Materials Processing
    • /
    • v.16 no.2 s.92
    • /
    • pp.113-119
    • /
    • 2007
  • Rapid mold heating has been recent issue to enable the injection molding of thin-walled parts or micro/nano structures. Induction heating is an efficient way to heat material by means of an electric current that is caused to flow through the material or its container by electromagnetic induction. It has various applications such as heat treatment, brazing, welding, melting, and mold heating. The present study covers a finite element analysis of the induction heating process which can rapidly raise mold temperature. To simulate the induction heating process, the electromagnetic field analysis and transient heat transfer analysis are required collectively. In this study, a coupled analysis connecting electromagnetic analysis with heat transfer simulation is carried out. The estimated temperature changes are compared with experimental measurements for various heating conditions.

Analysis of Crack Behavior of dissimilar materials in Brazed Interface By BEM (이종재 브레이징 계면에서의 균열거동해석)

  • 오환섭;김시현;김성재
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.269-274
    • /
    • 2001
  • Applications of Brazing in the studying fields such as High-Speed Machining are very increasing in various industry fields. Therefore, Applying to the fracture mechanics by numerical analysis method is very important to analyse the crack problem Dissimilar Materials in Brazed Interface. In this study, Stress intensity Factor (S.I.F) is analysed to investigate crack behavior on the crack tip of dissimilar materials in brazed interface such as a Hardmetal and a HSS by two dimensional(2-D) Boundary Element Method (BEM). Kelvin's solution was used as a fundamental solution in BEM analysis and stress extrapolation method was used to determine Stress Intensity Factor.

  • PDF

레이저 절단 판재의 브레이징을 이용한 적층 사출금형

  • 조용무;김재도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.04b
    • /
    • pp.323-327
    • /
    • 1993
  • Mold-making industry demands currently to reduce the tooling costs and time in mold making, and to improve the productivity and quality in injection molding process. These problems can be easily removed by laminated injection mold which is made with metal sheets prepared by laser cutting and bonded by brazing. Comparing withthe conventional mold making technology which mainly depends on the machining, this new technologyenables an arbitary design of cooling circuit without anyrestrictions of geometry. So it brings about high production rates of the injection molding processes. This paper estimate the conventional and laminated injection mold making process with a simple molding, and also the cooling efficiencyof thoes two kinds of mold with the filling and cooling analysis. The results show that the laminated injectionmold has much shorter tooling time, uniform mold temperature, and shorter cooling time in injection molding process.

A study on a transcription of pattern of the glass fiber reinforced laptom computer cover surface (유리섬유 강화 플라스틱 노트북 커버의 전사성에 관한 연구)

  • Kwak, Yong-Soo;Han, Seong-Ryeol
    • Design & Manufacturing
    • /
    • v.10 no.3
    • /
    • pp.39-45
    • /
    • 2016
  • The purpose of this study is to build effective cooling circuit design in injection mold to improve glass fiber reinforced laptop computer cover plastics' transcription and gloss. Moldflow Insight and Ansys CFD CAE program used to verify efficiency and the experiment mold is precision machined and brazing soldered to make three-dimension cooling channel. The temperature of mold in injection test are fixed to $80^{\circ}C$ and $160^{\circ}C$. The result of this experiment is the improved surface quality of plastics with 85% improvement of transcription in high temperature mold.

Experimental Analysis of Process Variables in Rapid Prototyping Technique by Using Projection Welding (프로젝션 용접을 이용한 쾌속조형법에서 공정변수의 실험적 해석)

  • Lee Sang-Chan;Park Jeong-Nam
    • Journal of Welding and Joining
    • /
    • v.23 no.2
    • /
    • pp.47-51
    • /
    • 2005
  • Rapid Prototyping (RP) technology has helped successfully to reduce time and costs since first emerged in 1986. Recently, RP using functional materials like as metal have been researched. However RP using molten metal and brazing material have been struggling to resolve several drawbacks, such as dimensional inaccuracy, poor surface finish and post finishing because occurring shrinkage and warpage at cooling. So, the purpose of this study is to develop a new RP technique using sheet metal and projection welding for reducing several drawbacks in occurring RP using molten metal. And optimum process variables were determined using desist of experiment(DOE).

The Metallization of Diamond Grits

  • Sung, James-C.;Hu, Shao-Chung;Chang, Yen-Shuo
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1134-1135
    • /
    • 2006
  • A revolutionary "Active Braze Coated Diamond" (ABCD) has been developed for bonding diamond grits firmly in the metal matrix. The molten braze is wetted and reacted with diamond to form strong chemical bond at the interface so that the diamond does not become knocked out of tools. The ABC is a nickel alloy that can form metallurgical diffusion bondswith the metal matrix. In essence, ABCD turns diamond into a metal grain so that the diamond tools can be made by conventional powder metallurgical process without being concerned about the poor bonding between matrix metal powder and the diamond as before.

  • PDF

Measurement of Cohesion Force between Diamond and Matrix in CMP Pad Conditioner

  • Kang, Seung-Koo;Song, Min-Seok;Jee, Won-Ho
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1128-1129
    • /
    • 2006
  • Currently Chemical Mechanical Planarization (CMP) has become an essential step in the overall semiconductor wafer fabrication technology. Especially the CMP pad conditioner, one of the diamond tools, is required to have strong diamond cohesion. Strong cohesion between diamond and metal matrix prevents macro scratch on the wafer during CMP Process. Typically the diamond tool has been manufactured by sintered, brazed and electro-plated methods. In this paper, some results will be reported of cohesion between diamond and metal matrix of the diamond tools prepared by three different manufacturing methods. The cohesion force of brazed diamond tool is found stronger than the others. This cohesion force is increased in reverse proportion to the contact area of diamond and metal matrix. The brazed diamond tool has a strong chemical combination of the interlayer composed of Cr in metal matrix and C in diamond, which enhance the interfacial cohesion strength between diamonds and metal matrix.

  • PDF

Current Status of Joining Ceramics and Metals (세라믹스의 접합기술)

  • Suganuma, Katsuaki
    • Ceramist
    • /
    • v.9 no.6
    • /
    • pp.30-36
    • /
    • 2006
  • Joining ceramics to metals has a variety of applications both in the structural and the electronics fields. One of the great benefits of the adoption of joining into the structural applications is to provide reliability to the ceramic components by backing up with metal components. In joining ceramics and metals, two key factors, i.e., establishing chemical bonding at interfaces and dissipation of thermal stress across interfaces, should be paid for attention. Many joining methods have been already established such as adhesive and mechanical joining, brazing and soldering, and solid state bonding. Each has its own benefits with some drawbacks. One can select a suitable process and materials following the requirements of the application. This report focuses on the current status of joining technology for ceramics/metal system.

  • PDF