• 제목/요약/키워드: Brazed joint

검색결과 71건 처리시간 0.02초

Zr기 필러메탈을 이용한 상용 순 티타늄(CP-Ti) 합금의 저온 브레이징 특성 (Low Temperature Diffusion Brazing of Commercial Pure(CP)-Ti alloy with Zr-based Filler Metal)

  • 선주현;신승용;홍주화
    • 열처리공학회지
    • /
    • 제29권1호
    • /
    • pp.1-7
    • /
    • 2016
  • Titanium and its alloys can be usually joined with brazing method. And the alloys should be brazed at low temperature to keep their original microstructure. In this study, the mechanical strength and microstructure of the CP-Ti joint-brazed with $Zr_{54}Ti_{22}Ni_{16}Cu_8$ filler metal having melting temperature of $774{\sim}783^{\circ}C$ were investigated. The tensile strengths of the joint-brazed at $800^{\circ}C$ with $100^{\circ}C/min$ of cooling rate showed more than 400 MPa which was as high as base metal. The $Widmanst{\ddot{a}}tten$ structure consisting of Ti and $Ti_2Ni$ phase was observed in the joint area. However, the tensile strengths of the joint-brazed at $800^{\circ}C$ with $15^{\circ}C/min$ of cooling rate were decreased and the Ti, $(Ti,Zr)_2Ni$ and $Ti_2Ni$ phases were observed at the joint area. It is believed that the $(Ti,Zr)_2Ni$ laves phases could decrease the mechanical strength of the joint and the cooling rate should be controled to get high strength of the titanium joint.

WC-9%Co와 SUJ2강의 접합특성에 미치는 열처리의 영향 (The Effect of Heat-treatment on Brazing Characteristics of WC-9%Co/SUJ2 Steel)

  • 정하윤;김종철;박경채
    • Journal of Welding and Joining
    • /
    • 제15권5호
    • /
    • pp.56-63
    • /
    • 1997
  • In The study, the bonding of WC-9%Co to SUJ2 steel using Ag-Cu-Zn-Cd insert metal has performed to investigate the bonding properties by heat-treatment. Bonding was brazed for 5-30min at 95$0^{\circ}C$, performed solution treatment for 5 min at 85$0^{\circ}C$ and sustained subsequently oil quenching. To investigate the effect of heat-treatment, tempering was executed at $600^{\circ}C$ for 30 min after oil quenching. Mechnical properties and chemical compositions on the brazed bonding interface were investigated by means of microstructural observation, 4-point bending test and EDS and XRD measurements. The results obtained were as follows. 1) The bonding strength of WC-9%Co/SUJ2 joints by Ag-Cu-Zn-Cd insert metal obtained about 78, 117 and 72MPa after brazing for 5, 20 and 30 min at 95$0^{\circ}C$. And the highest bonding strength obtained about 131MPa after brazing for10 min at 95$0^{\circ}C$ 2) Higher bonding strength of 288MPa was obtained in the joint that brazed for 10 min at 95$0^{\circ}C$, and carried out tempering for 30 min at $600^{\circ}C$ subsequently. 3) Fracture of joint brazed by Ag-Cu-Zn-Cd insert metal for 5, 10, 20 and 30 min created WC-9%Co/SUJ2 interface. The joint that brazed for 10 min at 95$0^{\circ}C$ and then tempered for 30 min at $600^{\circ}C$ was fractured at the site of WC-9%Co.

  • PDF

브레이징 접합공정 조건이 SiN4/S.S. 316 접합체의 기계적 특성 및 신뢰도에 미치는 영향 (Effects of Brazing Processing Condition on Mechanical Properties and Reliability of Si3N/S.S. 316 Joints)

  • 장희석;박상환;최성철
    • 한국세라믹학회지
    • /
    • 제39권10호
    • /
    • pp.955-962
    • /
    • 2002
  • 활성 금속 브레이징법의 공정변수인 브레이징 온도 및 시간의 변화가 Cu buffer layer를 사용한 $Si_3N_4$Stainless steel 316 접합체의 기계적 특성 및 신뢰도에 미치는 영향을 규명하기 위하여 브레이징 조건 변화에 따른 접합계면 미세구조 변화를 조사하였다. 900${\circ}C$ 이상의 온도에서 브레이징 된 접합체에서는 Cu buffer layer가 브레이징 합금에 용해되어 연속 Cu층을 유지하지 못하였으며, $Si_3N_4$/brazing alloy 계면에서 계면 반응물 층의 두계도 급격히 증가하였다. 950${\circ}C$에서 브레이징된 Cu buffer layer를 사용한 $Si_3N_4$/Stainless steel 316 접합체의 파괴강도는 접합체 내 잔류응력의 증가로 급격히 감소하였다. 950${\circ}C$ 이하의 온도에서 브레이징 시간의 변화는 Cu buffer layer를 사용한 $Si_3N_4$/Stainless steel 316 접합체의 파괴강도 및 파괴경로에 큰 영향을 미치지 못하였다.

활성 용가재를 이용한 세라믹 및 스테인레스강의 접합 (Ceramic and stainless steel brazing by active filler metal)

  • 김원배;김숙환;권영각;장래웅;배석천
    • Journal of Welding and Joining
    • /
    • 제9권4호
    • /
    • pp.17-27
    • /
    • 1991
  • The direct brazing technology which could be used for the simplification of brazing process and the improvement of brazed joint quality was studied with $Al_2O_3$ and stainless steels. The brazing of $Al_2O_3$ to STS304 or STS430 was performed under different brazing conditions such as brazing filler metal, temperature, heating rate and brazing time. Microstructural observation and chemical analysis be SEM/EPAM were carried out to verify the quality of brazed joints. 4-point bending strength of brazed joints was also measured to find the optimal brazing conditions. The results showed that, in brazing of $Al_2O_3$, the mixed oxide layer resulted from the reaction between Ti in filler metal and oxide layer on the material surface to be brazed was found to be bery important for the joint quality. The width of oxide layer varied with the brazing conditions such as brazing time, heating rate and chemical composition of filler metals. The strength of brazed joints was more affected by the type of materials and their thermal properties than by brazing heat cycle.

  • PDF

PVD-Be와 비정질 Zr-Be 합금을 용가재로 사용한 Zircaloy-4의 브레이징 접합부의 비교 연구 (A Study on the Comparison of Brazed Joint of Zircaloy-4 with PVD-Be and Zr-Be Amorphous alloys as Filler Metals)

  • 황용화;김재용;이형권;고진현;오세용
    • 한국산학기술학회논문지
    • /
    • 제7권2호
    • /
    • pp.113-119
    • /
    • 2006
  • 중수로형 핵연료 제조공정 중 연료봉 피복관에 간격체와 지지체 등의 부착물이 브레이징으로 접합된다. 본 연구에서는 베릴륨을 물리 증착법(PVD)으로 접합될 부착물의 표면에 증착한 것과 비정질 용가재[$Zr_{1-x}Be_{x}(0.3{\le}x{\le}0.5)$]를 사용하여 브레이징된 접합부의 미세조직과 경도 등의 특성을 비교하고 브레이징 온도가 접합부에 미치는 영향 조사하였다. 비정질 용가재에 의한 접합층의 두께는 PVD-Be의 경우와 비교하여 더 얇았고, Be 함량이 감소할수록 접합층의 두께는 감소하였으며 모재의 침식은 거의 없었다. PVD-Be의 경우 공정 반응, 액상 출현, 모세관 현상과 확산으로 브레이징 되나 비정질 합금은 용가재 만이 용융되어 액상 접합되는 것으로 사료된다. PVD-Be 접합부의 미세조직은 계면에서 수지상이 형성되어 내부로 성장하나, 비정질 합금에 의한 접합부는 석출된 제2상들이 구상으로 구성되며 브레이징 온도가 증가할수록 구상은 더욱 커졌다. 비정질 합금 접합부의 경도는 Be 함량이 감소할수록 경도는 증가하였다. 본 연구에 사용된 비정질 합금 중 $Zr_{0.7}Be_{0.3}$ 합금은 접합부에서 Be의 모재로의 확산이 적어 부드러운 계면과 모재의 침식이 없었고 높은 경도 때문에 핵연료 피복재 접합에 가장 적합한 용가재로 사료된다.

  • PDF

AZ31 마그네슘합금과 아연도금강판 이종소재의 레이저 브레이징 특성 (Characteristics of the laser brazing on AZ31 magnesium alloy and Zn coated steel dissimilar joint)

  • 이목영;김숙환
    • 한국레이저가공학회지
    • /
    • 제17권1호
    • /
    • pp.7-12
    • /
    • 2014
  • The dissimilar welding between magnesium alloy and steel sheet was required in automobile industry to increase the strength of the dissimilar joints. Laser brazing is one of the good joining processes for Mg- steel dissimilar joint. In this study, AZ31 magnesium alloy and Zn coated steel dissimilar joint was brazed using diode direct laser with Mg600 filler wire and Superior #21 flux. The wetting of Mg filler wire on Zn coating was very good because of the formation of eutectic phase with low melting temperature. The strength of the brazed joint between AZ31 magnesium alloy and Zn coated steel was 131.3N/mm. The fracture occurred at brazement.

  • PDF

2상 스테인리스강과 크롬동합금의 브레이징부 생성상의 생성기구에 관한 연구 (A Study on the Formation Mechanism of Microconstituents in Brazed Joint of Duplex Stainless Steel and Cr-Cu Alloy)

  • 김대업
    • Journal of Welding and Joining
    • /
    • 제19권5호
    • /
    • pp.534-539
    • /
    • 2001
  • The formation mechanism of microconstituents in brazed joints of duplex stainless steel and Cr-Cu alloy which is an essential process of rocket engine manufacturing was investigated using Cu base insert metal. $SUS329J_3L$ and C18200 were used for base metal and AMS 4764 was used for insert metal. The brazing was carried out under various conditions. There were various phases in the joints, because of reaction between liquid insert metal and base metals. Since liquid insert metal reacts with duplex stainless steel, liquid Cu from insert metal infiltrated into the $\alpha/\beta$ interface of duplex stainless steel. Through the process of Cu infiltration, isolated stainless steel pieces come into the liquid insert metal. Since liquid insert metal reacts with Cr-Cu alloy. Cr precipitates from C18200 come into the liquid insert metal. With increment of bonding temperature and holding time, amounts and sizes of phases increased. but Cr-Mn compounds decreased at 1303k for 1.2ks and Mn-rich phases disappeared Fe-Cr compounds formed.

  • PDF

Cu-Si 삽입금속을 이용한 DP강의 MIG 아크 브레이징 접합부의 미세조직과 기계적 성질 (Microstructure and Mechanical Properties of Gas Metal Arc Brazed Joint of DP Steel with Cu-Si Filler Metal)

  • 조욱제;윤태진;곽승윤;이재형;강정윤
    • Journal of Welding and Joining
    • /
    • 제34권5호
    • /
    • pp.70-76
    • /
    • 2016
  • In this study, Microstructure and tensile properties in arc brazed joints of 1000MPa grade DP steel using Cu-Si insert metal were investigated. The fusion zone was composed of Cu phase which solidified a little Fe and Si. The former phase formed due to dilute the edge of base material by arc, although Fe was not solid solution in Cu at the room temperature. Cu3Si particles formed by crystallization at $1100^{\circ}C$ during faster cooling. After the tensile shear test, there are no differences between the brazed joint efficiencies. The maximum joint efficient was about 37% compared to strength of base metal. It is better than that of arc brazed joint of DP steel using Cu-Sn filler metal. Fracture position of all brazing conditions was in the fusion zone. Crack initiation occurred at three junction point which was a stress singularity point of upper sheet, lower sheet and the fusion zone. And then crack propagated across the fusion zone. The reason why the fracture occurred at fusion zone was that the hardness of fusion zone was lower than that of base material and heat affected zone. The correlation among maximum load and hardness of fusion zone and EST at fractured position was $R^2=0.9338$. Therefore, this means that hardness and EST can have great impact on maximum load.

Ag-Ti계 합금을 사용한 SiC/SiC 및 SiC/연강 브레이징에 대한 연구 (A Study on SiC/SiC and SiC/Mild steel brazing by the Ag-Ti based alloys)

  • 이형근;이재영
    • Journal of Welding and Joining
    • /
    • 제14권4호
    • /
    • pp.99-108
    • /
    • 1996
  • The microstructure and bond strength are examined on the SiC/SiC and SiC/mild steel joints brazed by the Ag-Ti based alloys with different Ti contents. In the SiC/SiC brazed joints, the thickness of the reaction layers at the bond interface and the Ti particles in the brazing alloy matrices increase with Ti contents. When Ti is added up to 9 at% in the brazing alloy. $Ti_3SiC_2$ phase in addition to TiC and $Ti_5Si_3$ phase is newly created at the bond interface and TiAg phase is produced from peritectic reaction in the brazing alloy matrix. In the SiC/mild steel joints brazed with different Ti contents, the microstructure at the bond interface and in the brazing alloy matrix near SiC varies similarly to the case of SiC/SiC brazed joints. But, in the brazing alloy matrix near the mild steel, Fe-Ti intermetallic compounds are produced and increased with Ti contents. The bond strengths of the SiC/SiC and SiC/mild steel brazed joints are independent on Ti contents in the brazing alloy. There are no large differences of the bond strength between SiC/SiC and SiC/mild steel brazed joints. In the SiC/mild steel brazed joints, Fe dissolved from the mild steel does not affect on the bond strength of the joints. Thermal contraction of the mild steel has nearly no effects on the bond strength due to the wide brazing gap of specimens used in the four-point bend test. The brazed joints has the average bond strength of about 200 MPa independently on Ti contents, Fe dissolution and joint type. Fracture in four-point bend test initiates at the interface between SiC and TiC reaction layer and propagates through SiC bulk. The adhesive strength between SiC and TiC reaction layer seems to mainly control the bond strength of the brazed joints.

  • PDF

탄소강과 스테인리스강의 진공브레이징에 관한 연구 (A study on the vacuum brazing of carbon steels to a stainless steel)

  • 이창동;나석주
    • 대한기계학회논문집
    • /
    • 제12권5호
    • /
    • pp.1083-1091
    • /
    • 1988
  • 본 연구에서는 위의 두번째 연구동향과 맥락을 같이하는 것으로서 스테인리스 강(SUS304)에 대한 진공브레이징 연구 및 탄소강의 진공 브레이징에 대한 연구결과들 을 토대로 하여 SUS304와 탄소강과의 진공브레이징 현상을 연구하였는데 특히 모재의 탄소함유량, 브레이징시간 및 접합부 틈새(joint clearance)등에 따라 접합부에 나타 나는 여러 금속학적 현상의 규명 및 접합강도(joint strength)에 대해 변수들이 미치 는 영향을 연구 하였다.