• Title/Summary/Keyword: Brazed joint

Search Result 71, Processing Time 0.023 seconds

Characteristics of Brazed Joint of Sintered Bronze/steel Using Ag-Cu-Zn Type Filler Materials (Ag-Cu-Zn-Cd 계 용가재를 이용한 Bronze 소결체/강의 브레이징 접합부 특성 평가)

  • 이정훈;이창희
    • Journal of Welding and Joining
    • /
    • v.17 no.3
    • /
    • pp.79-89
    • /
    • 1999
  • The study was carried out to examine in more detail metallurgical and mechanical properties of brazed joints of diamond cutting wheel. In this work, shank(mild steel) and sintered bronze-base tips were brazed with three different filler materials(W-40, BAgl and BAg3S). The machine used in this work was a high frequency induction brazing equipment. The joint thickness, porosities and microstructure of brazed joints with brazing variables(brazing temperature, holding time) were evaluated with OLM, SEM, EDS and XRD. Bending(torque) test was also performed to evaluate strength of brazed joints. Further wetting test was performed in a vacuum furnace in order to evaluate the wettability of filler metals on base metals9shank and tips). The brazing temperature had a strong influence on the joint strength and the optimum brazing temperature range was about $700~850^{\circ}C$ for the bronze/steel combinations. The strength of the brazed joint was found to be influenced by the three factors : degree of reaction region, porosity content, joint thickness. The reaction region was formed in the bronze-base tip adjacent to the joint. The reaction region resulted in a bad influence on the strength due to the formation of Cu5.6Sn, CuZn4, $\beta(CuZn)$ and CdAg, etc. Porosities increased as brazing variables(brazing temperature, holding time) increased, and the brazed joints with porosities of less than about 3-5% had an optimum strength for the bronze-base tip.

  • PDF

High Temperature Flexural Strengths of the Ceramic-Metal Brazed Joints (세라믹-금속 브레이징 접합조인트의 고온 접합강도에 관한 연구)

  • Lee, Su-Jeong;Jeong, Myung-Yeong;Lee, Dai-Gil;Goo, Hyung-Hoi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.2
    • /
    • pp.520-528
    • /
    • 1996
  • Four point bending tests of the brazed joint composed of sintered silicon nitride and 0.2% carbon steel with Cusil ABA filler which were fabricated at 86$0^{\circ}C$ were performed at temperatures, 25, 100, 200, 300, 400, 50$0^{\circ}C$ From the experiments, the maximum bending strength was measured at 30$0^{\circ}C$ From the 3D FE analysis of the residual stress of the brazed joint, it was revealed that the thermally induced residual stresses were minimized when the environmental temperature was 35$0^{\circ}C$ Considering the degradation of the filler material at high temperatures, it was calculated that the maximum bending strength of the brazed joint occured just below the temperature of the minimum thermal residual stress and the thermal residual stress was the dominative parameter of the brazed joint.

Study on the Improvement of Brazeability for Copper-Aluminum Dissimilar Materials Joint (구리-알루미늄 이종재료의 브레이징 특성 향상에 관한 연구)

  • 정호신;배동수;고성우
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.3
    • /
    • pp.49-57
    • /
    • 2001
  • One of the most important considerations to braze Cu-Al dissimilar materials is control of brittle metallic compound which makes it difficult to obtain a sound brazed joint. Nowdays, several attempts were made to control the metallic compound. But effective method for controlling metallic compound was not established. In this point of view, commercially pure aluminum and copper were used as base metal and Al-Si-X and Zn-Al-X alloy systems were developed as filler metal. Brazing was carried out to find optimum conditions for Cu-Al dissimilar joint. The results obtained in this study were summarized as follows: 1) The joint brazed by Al-Si-X filler metal showed good brazeability and mechanical properties. The tensile strength of the joint brazed over solidus temperature was more than 90% of Al base metal. Especially, the joint brazed at liquidus temperature was fractured in the Al base metal. 2) Fluorides fluxes(a mixture of potassium fluoro-aluminates) were used to improve surface cleanliness of base metal and wettability of Al-Si-X filler metal. It was melted at the temperature about 1$0^{\circ}C$ lower than that of the filler metal, and made appropriate brazing environment. Therefore, it could be a proper selection as flux.

  • PDF

Laser brazing molybdenum using two titanium base fillers

  • Lin, Chia-Chen;Lee, Cheng-Han;Shiue, Ren-Kae;Shy, Hsiou-Jeng
    • Advances in materials Research
    • /
    • v.1 no.3
    • /
    • pp.183-190
    • /
    • 2012
  • Brazing Mo using Ti and Ti-15-3 foils has been investigated in the experiment. For traditional furnace brazing, solidification shrinkage voids cannot be completely removed from the joint even the brazing temperature increased to 2013 K and 160 ${\mu}m$ thick Ti foil applied in brazing. Similar results are observed from the joint using Ti-15-3 filler. In contrast, the quality of laser brazed joint is much better than that of furnace brazed joint. A sound joint is achieved after laser brazing. Tensile strengths of 418 and 373 MPa are obtained from laser brazed joints at the power of 800W and travel speed of 5 mm/s using Ti and Ti-15-3 fillers, respectively. All laser brazed joints are fractured at the brazed zone and cleavage dominated fractures are widely observed from their fractographs. The Ti base fillers show potential in laser brazing Mo substrate.

Microstructure of the Brazed Joint for LRE Injector (액체로켓엔진용 인젝터 접합부의 미세조직)

  • 남대근;홍석호;이병호
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.87-89
    • /
    • 2004
  • Brazing is an indispensable manufacturing technology for liquid rocket engine. In this study, for LRE injector, stainless steel 316L was used of base metal and Ni based MBF-20 of insert metal. The brazing and diffusion was carried out under various conditions. There are solid phase and. residual liquid phase in the brazed joint. With increment of holding time, the amount of solid phase increased and the elements of base metal and insert metal compositionally graded. Boron diffused from insert metal came into base metal and made boride with Cr and Mo at the brazed joint of base metal and insert metal.

  • PDF

Cyclic Oxidation Behavior of Fe-Cr-Al Joint Brazed with Nickel-Base Filler Metal (Ni계 합금으로 브레이징된 Fe-Cr-Al 합금 접합부의 주기산화거동)

  • Mun, Byeong-Gi;Choe, Cheol-Jin;Park, Won-Uk
    • 연구논문집
    • /
    • s.29
    • /
    • pp.141-149
    • /
    • 1999
  • Brazing of Fe-Cr-Al alloy was carried out at $1200^{\circ}C$ in vacuum furnace using nickel-based filler metals : BNi-5 powder(Ni-Cr-Si-Fe base alloy} and MBF-50 foil (Ni-Cr-Si-B). The effect of boron content on the stability of oxide scale on the brazed joint was investigated by means of cyclic oxidation test performed at $1050^{\circ}C$ and $1200^{\circ}C$. Apparently, the joints brazed with MBF-50 containing boron showed relatively stable oxidation rates compared to boron-free BNi-5 at both temperatures. However, it was considered that the slower weight loss of MBF-50 brazed specimen wasn’t resulted from the low oxidation rate but from the spallation of oxide layer. The oxide layer consisted of thick spinel oxide on the surface and $Al_2 O_3$ internal oxide layer along the interface between mother alloy and braze, the mother alloy was also eroded seriously by the formation of spinel oxides such as $FeCr_2 O_4$ and $NiCr_2 O_4$ on the surface, likely to be induced by the change of oxide forming mechanism due to diffusion of boron from the braze. On the contrary, the joint brazed with BNi-5 showed the good oxidation resistance during the cyclic oxidation test. It seems that the oxidation can be retarded by the formation of stable $Al_2 O_3$ layer at the surface.

  • PDF

A Study on the Interfacial Structure and Shear Strength of Cu/Stainless Steel Brazed Joint (동-스테인리스강 브레이징 접합부의 계면 조직과 접합 강도에 관한 연구)

  • 박종혁;이우천;강춘식
    • Journal of Welding and Joining
    • /
    • v.12 no.3
    • /
    • pp.48-55
    • /
    • 1994
  • In this experiment, to find optimum brazing conditions for Cu/Stainless Steel brazing using filler metals of Ag-Cu-Zn-Cd system, first of all spreading ratio was tested on 304 stainless Steel and low carbon steel. And then shear test of brazed joint was executed. As the result of that, the shear strengths of brazed joints were the range of 60-90 MPa. Through microstructure analysis for brazed interface layer, We found as follows. Firstly interface layer increased as time increased. Secondly continuous layer of Ag-Cd compound was observed along the side of stainless steel. Also by means of EDS analysis for fracture surface, ductile fracture was occurred and precipitates on the fracture surface were found to include Cr, Mn, Si in Ag-rich phase.

  • PDF

An Analysis for Failure Mechanisms and Strength Evaluation on Brazed Joint (브레이징 접합부의 강도평가 및 고장분석)

  • Kang Ki-Weon;Shim Hee-Jin;Lee Byung-Jei;Jhang Kyung-Yung;Kim Jung-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.10 s.253
    • /
    • pp.1298-1304
    • /
    • 2006
  • The present paper is aiming at the evaluation for failure mechanisms and static strength of brazed joints used in household electronics. For these purposes, the failure analysis was performed on the various brazed joints, through the bursting, the micro-Victors hardness tests and 3-dimensional X-ray technique. The failure modes of brazed joints were classified into two different types, based on the results of bursting pressure test by means of self-designed internal-pressure testing machine. Their failure mechanism was dependent on the relationship between heat effect occurred in manufacturing process and internal flaws such as incomplete penetration and pin hole. Also, a finite element analysis was performed to evaluate the stress distribution with respect to the heat and the internal flaws.

Stress Analysis of Brazed Interface in Dissimilar Materials by BEM (이종접합재 접합계면의 응력해석)

  • 오환섭;김시현;김성재;양인수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.171-176
    • /
    • 2003
  • In this study, stress analysis using Boundary Element Method (BEM) was carried to investigate stress distribution in the brazing joint between a Hardmetal and a HSS. The two models were proposed to analyze the stress singularity in the interfaces of the brazing joint. The material type, thickness of the filler metal and the length of the vertical brazing adhesive are considered in the BEM analysis. As results, the peak point of the stress is founded to be in the lower interface of the brazed joint. It should be noted that the maximum stress of the peak point is being affected by the thickness and length of the brazing joint.

A Study on the Brazing Bondinf Conditions of A1050 Using Al-Si Alloy Filler Metal (Al-Si계 필러메탈을 이용한 A1050알루미늄의 브레이징 접합조건에 관한 연구)

  • 김정일;김영식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.17 no.1
    • /
    • pp.66-72
    • /
    • 1993
  • The brazing of Al to Al using Al-Si alloy filler metal was performed under different bonding conditions such as ratio of lap length to plate thickness, surface roughness and joint clearance of the lap joint. The adopted thickness of the base metal in this experiments were two kinds of 4mm and 7mm which were most commonly used in various field. Influence of several bonding conditions of Al/Al joint was quantitavely evaluated by bonding strength test, and microstructural analysis at the interlayer were performed by optical microscope. From above experiments, the optimum bonding conditions of the brazing bonding of Al/Al using Al-Si alloy filler metal was determined. The major results obtained are as follows. 1) The fracture occurs at brazed joint in the conditions of that the ratio of lap length to plate thickness is less than 2 in case of 7mm plate thickness. 2) The ratio of lap length to plate thickness which the fracture occurs at base metal is decreased with the decreasing of the plate thickness. 3) The joint strength is not affected by the surface roughness and joint clearance of the brazed part. 4) The heat-treatment of the brazed joint contribute to eliminate the boundary between the base metal and filler metal. However, the joint strength is not affected by the heat-treatment.

  • PDF