• Title/Summary/Keyword: Brassica crop

Search Result 225, Processing Time 0.028 seconds

Physiological Response, Fatty Acid Composition and Yield Component of Brassica napus L. under Short-term Waterlogging (단기간 침수처리 하에서 유채의 생리적 반응, 지방산 조성과 수확량)

  • Ku, Yang-Gyu;Park, Won;Bang, Jin-Ki;Jang, Young-Seok;Kim, Yong-Beom;Bae, Hyun-Jong;Suh, Mi-Chung;Ahn, Sung-Ju
    • Journal of Bio-Environment Control
    • /
    • v.18 no.2
    • /
    • pp.142-147
    • /
    • 2009
  • The effects of short-term waterlogging on physiological responses, fatty acid compositions and yield components of rapeseed at both the vegetative growth and the reproductive growth stages were assessed in this study. Waterlogged plants were treated for a period of 10 days at the vegetative growth stage and 4 days at the reproductive growth stage. The results show that photosynthesis and stomatal conductance at both the vegetative growth and the reproductive growth stage were significantly reduced during the waterlogging period and after the recovery period. When the plants were removed from water, photosynthesis and stomatal conductance progressively restored similar values to those of control plants within $2{\sim}3$ days. Fatty acid compositions were unaffected by waterlogging treatment. However, yield components (pod number and pod length) of the waterlogged treated plants at the reproductive growth stage were significantly reduced. These results suggest that short-term waterlogging may thus influence oilseed yield component.

A New F1 Hybrid Variety of Rapeseed 'Suan' with Early Maturing and High Oleic Acid (조숙 올레인산 고함유 1대잡종 유채 신품종 '수안')

  • Lee, Yong-Hwa;Kim, Kwang-Soo;Jang, Young-Seok;Cho, Hyun-Jun;Choi, Hyun-Gu;Jang, Young-Gik;Kang, Dal-Soon;Kang, Hyung-Sik;Suh, Sae-Jung
    • Korean Journal of Breeding Science
    • /
    • v.43 no.3
    • /
    • pp.172-176
    • /
    • 2011
  • 'Suan' is a new $F_1$ hybrid variety of rapeseed (Brassica napus L.) with early maturing and high oleic acid. This hybrid variety was bred by the cross between Mokpo-CGMS (male sterile line) and 8516-B-5-6-5-3 (restore line) for the production of bio-diesel and edible oil in 2006. 'Suan' has green and parted leaf, yellowish flower, and black seed coat. 'Suan' is more tolerant to lodging and stem rot compared to 'Sunmang', check variety. The ripening date of 'Suan' is June 2nd which is 6 days earlier than 'Sunmang'. Yield trials were conducted from 2006 to 2007 and regional adaptation trials were examined at five locations each in 2008 and 2009. The average seed yield of regional adaptation trials was 381 kg/10a that was 4% higher than that of 'Sunmang'. Total oil content of 'Suan' was 44.3%. Oleic acid content was 68.3%, which is 5.2% higher than 'Sunmang' but, erucic acid was not detected. Total glucosinolate content was 2.31 mg/g. Therefore, this variety is recommended as a leading variety at southwestern area including Jeonnam, Jeonbuk and Kyongnam provinces of South Korea.

Comparative Transcriptome Analysis of the Response of Two Lines of Rapeseed (Brassica napus L.) to Cold Stress (유채 두 계통에서 저온 스트레스에 반응하는 전사체 발현 비교 분석)

  • Lee, Ji-Eun;Kim, Kwang-Soo;Cha, Young-Lok;An, Da-Hee;Byun, Jong-Won;Kang, Yong-Ku
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.66 no.1
    • /
    • pp.37-71
    • /
    • 2021
  • Rapeseed is a typical winter crop, and its freezing stress tolerance is a major feature for winter survival. Therefore, it is important to comprehend clearly the physical and molecular mechanisms of rapeseed under freezing stress conditions. This study investigates the physical and transcriptome changes of two rapeseed lines, 'J8634-B-30' and 'EMS26', under cold acclimation and freezing temperature treatments. The proline content of 'J8634-B-30' at 5 ℃ increased 8.7-fold compared to that before treatment, and there was no significant change in that of 'EMS26' RNA-sequencing analysis revealed 5,083 differentially expressed genes (DEGs) of 'J8634-B-30' under cold acclimation condition. Among the genes, 2,784 (54.8%) were up-regulated and 2,299 (45.2%) were down-regulated. The DEGs of 'EMS26' under cold acclimation condition were 5,831 genes, and contained 2,199 up-regulated genes (37.7%) and 3,632 down-regulated genes (62.3%). Among them, only DEGs annotated in the cold response-related signaling pathways were selected, and their expression in the two rapeseed lines was compared. Comparative DEGs analysis indicated that cold response related signaling pathways are proline metabolism and ABA (Abscisic acid) signaling. And ICE (Inducer of CBF expression) - CBF (C-repeat-binding factor) - COR (Cold-regulated) signaling were the significantly differentially expressed transcripts in the two rapeseed lines. The major induced transcripts of 'J8634-B-30' induced P5CS (Δ'-pyrroline-5-carboxylate synthetase), which is related to proline biosynthesis, PYL (pyrabactin resistance-like protein, ABA receptor) and COR413 (cold-regulated 413 plasma membrane 1). In conclusion, these result provide a foundation for understanding the mechanisms of freezing stress tolerance in rapeseeds. Further functional studies should be performed on the freezing stress-related genes identified in this study, which can contribute to the transgenic and molecular breeding for freezing stress tolerance in rapeseed.

Resposes of Two Cold - Regulated Genes, BN28 and BN115, in Field -Grown Canola (Brassica napus L.) (포장에서 케놀라 저온반응성 유전자 발현)

  • Moontae, Song
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.40 no.1
    • /
    • pp.69-76
    • /
    • 1995
  • Cold acclimation involves changes in gene expression. BN28 and BN115 are two genes which are regulated by cold temperature and assumed having roles in cold acclimation. The objectives of this experiment was to explore the expression of BN28 and BN115 under field conditions. Six winter cultivars were planted at three different dates during the fall. The expression of the genes was determined by northern blot analysis of total RNA taken from leaves 15 to 30 day-intervals after planting. The expression of the two genes was detected within 15 days after planting well before onset of freezing tolerance in plants. This suggestes either their expression was a prerequisite of the freezing tolerance or their expression was regulated by other environmental factors as well as temperature. Two genes showed a different expression pattern suggesting they had a different regulatory system. Although timecourse increase in expression of the cold-regulated genes was matched with increase in freezing tolerance, the difference of expression in cultivar level at specific times of measurement was not correlated with freezing tolerance at the moment.

  • PDF

Effect of Nitrogen Rate on Growth, Yield, and Chemical Composition of Forage Rape Cultivars

  • Cho, Nam-Ki;Jin, Woo-Jong;Kang, Young-Kil;Ko, Mi-Ra;Park, Yang-Mun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.43 no.2
    • /
    • pp.66-70
    • /
    • 1998
  • Four introduced forage rape (Brassica napus) cultivars, 'Akela', 'Ramon', 'Sparta', and 'Velox' and a leading rapeseed cultivar, 'Hallayuchae' were grown at nitrogen (N) rates of 0, 100, 250, 300, 350, and 400 kg/ha to (i) select forage rape cultivars adapted best to Cheju area, and (ii) determine the optimum N rate for the best cultivars. Days from seeding to flowering across the cultivars increased 190 to 195 days as N rate increased from 0 to 400 kg/ha. Average days to flowering of six cultivars ranged from 182 to 198 days. Plant height increased as N rate increased up to 300 kg/ha and then decreased with a further increase in N rate and ranged from 159 to 174 cm among the cultivars. The optimum N rate for the greatest dry matter yield of five cultivars ranged from 222 to 258 kg/ha. Sparta showed the greatest dry matter yield (35.79 Mg/ha), followed by Akela, Hallayuchae, Velox, and Ramon. As N rate increased, crude protein content linearly increased but crude fiber content declined curvilinearly. Akela and Sparta had higher protein content than the other cultivars did. The forage cultivars had lower crude fiber content than the oilseed cultivar Hallayuchae did. Our results demonstrated that Sparta was best adapted to Cheju area and the optimum N rate for Sparta was about 220kg/ha.

  • PDF

Genetic analysis of clubroot resistance in Chinese cabbage using single spore isolate of Plasmodiophora brassicae and development of RAPD marker linked to its resistance gene

  • Cho, Kwang-Soo;Hong, Su-Young;Han, Young-Han;Yoon, Bong-Kyeong;Ryu, Seoung-Ryeol;Woo, Jong-Gyu
    • Journal of Crop Science and Biotechnology
    • /
    • v.11 no.2
    • /
    • pp.101-106
    • /
    • 2008
  • To identify inheritance of clubroot disease resistance genes in Chinese cabbage, seedling tests of $BC_1P_1,\;BC_1P_2$, and $F_2$ populations derived from $F_1$ hybrid(var. CR Saerona) using single spore isolate(race 4 identified with William's differential host) from Plasmodiophora brassciae were conducted. Resistance(R) and susceptible(S) plants segregated to 1:0 in backcross to the resistant parent. The $F_2$ population segregated in a 3(R):1(S) ratio. This result implied that the resistance of clubroot disease is controlled by a single dominant gene to the race 4 of P. brassicae in CR Saerona. To develop DNA markers linked to clubroot resistance genes, 185 plants of CR Saerona among $F_2$ populations were used. A total of 300 arbitrary decamer was applied to $F_2$ population using BSARAPD(Bulked segregant analysis-Randomly amplified polymorphic DNA). One RAPD marker linked to clubroot resistance gene in CR Saerona($OPJ_{1100}$) was identified. This marker was 3.1 cM in distance from resistance gene in $F_2$ population. This marker may be useful for a marker-assisted selection(MAS) and gene pyramiding of the clubroot disease resistant gene in Chinese cabbage breeding programs.

  • PDF

A Study on the Cultivation of Forage Crops in Amur Oblast - An Alternative Measure of Preparations for Conclusion of the FTA - (아무르 주의 사료작물 재배에 대한 일고 - FTA 체결에 대한 대비책의 일환 -)

  • Kim, Jong-Heon
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.27 no.1
    • /
    • pp.67-76
    • /
    • 2007
  • The conclusion of free Trade Agreement between South Korea and USA can become a serious threat to the Korean agriculture. On the strategic scheme the foodstuffs is the basis for protection of the state sovereignty. The Amur oblast of Russian Federation is region, which can supply South Korea cheap and good qualitative feeds. It means South Korea should create agricultural cooperation with the Amur oblast of Russian Federation with the purpose to begin organic agriculture in this area and it will help South Korea to counteract a quantitative attack on Korea from the side of american agricultural production. In the Amur oblast there are following fodder crops; Alfalfa, Smooth brome grass (gromus adonis L.), Siberian couch grass, Sudan pass, Colza rape (Brassica napus) and Amaranth (Avfranthus). In the same area also exist oatmeal, wheat, corn and barley, which is possible to use for feeds. All these above written cultures are cultivated organically, therefore it is possible to use them as organic forages in South Korea. It is very important to know system of crop rotation in the Amur oblast. There is a scheme of crop rotation, which is connected with increase and preservation of fertility of soil, maintenance of growth of productivity of agricultural cultures and reception of high-quality production. It is necessary to begin organic agriculture in a southern part of Amur oblast, where, in 2001 year, 97% of all sowing areas was concentrated. The acidity degree of soil in this part is not high ($ph5.1{\sim}5.5$), therefore does not require liming.

Screening Method for Non-viable Seeds in Brassicaceae Vegetable Crops by Sinapine Leakage (Sinapine누출을 이용한 십자화과 채소의 퇴화종자 선별법)

  • 민태기
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.39 no.5
    • /
    • pp.473-479
    • /
    • 1994
  • A seed coating system was developed to screen non-viable seeds in the Brassicaceae. The crops studied were radish, chinese cabbage, broccoli, cauliflower and brussel sprout. Sinapine leaked more from artificially deteriorated seeds than non-deteriorated seeds. Seed coating with cellulose was to trap the sinapine leakage in the non-viable Brassicaceae vegetable seeds. The seeds were first hydrated, then coated with cellulose powder to capture the leakage. Coated seeds were dried, then sorted two fractions-fluorescent seeds and non-fluorescent seeds under the UV light. The ratio of the fluorescent seeds were higher in bad seedlot than good one. The germination rate were increased 3∼35% by eliminating the fluorescent seeds in tested Brassica vegetable seeds. Sowing non-fluorescent seeds resulted in a greater percent normal seedling than non-coated seeds in all seedlots. The fluorescent seeds contained a high percentage of the dead and abnormal seedlings.

  • PDF

Effect of Zeolite Application on Growth and Yield of Chinese Cabbage and Chemical Properties of Soil Under Greenhouse Cultivation

  • Kim, Lee-Yul;Kim, Ki-In;Kang, Seong Soo;Kim, Jung-Ho;Jung, Kang-Ho;Hong, Soon-Dal;Lee, Won-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.3
    • /
    • pp.218-224
    • /
    • 2015
  • Zeolite may help crop growth, yield increase, and salt removal. Field experiment under greenhouse cultivation was conducted to study the effect of zeolite application on growth and yield of Chinese cabbage (Brassica campestris L.) and soil. Soil was classified as Gyuam series (coarse silty, mixed, nonacid, mesic family of Aquic Fluvaquentic Eutrudepts). Six zeolite rates were 0, 3, 5, 10, 20 and $40Mg\;ha^{-1}$. Experimental design was a completely randomized design. Chinese cabbage was grown three times consecutively. Established plant number of plant and yield as fresh weight (F.W.) were measured and soil samples were taken before and after harvesting. Chinese cabbage yield was $76.9Mg\;ha^{-1}$ at a rate of $20Mg\;zeolite\;ha^{-1}$, $54.3Mg\;ha^{-1}$ at a rate of $5Mg\;zeolite\;ha^{-1}$, and $51.3Mg\;ha^{-1}$ at control (no zeolite), respectively. Second order regression analysis using zeolite rate and yield showed that optimum zeolite application rate was between 24 and $26Mg\;ha^{-1}$. The regression equation explained about 88% of the yield variability. The electrical conductivity (EC) decreased from 3.2 to $1.0dS\;m^{-1}$ for all treatments so that salt accumulation was not a concern. Based on the results, we recommend that optimum zeolite application rate is between 20 and $24Mg\;ha^{-1}$ for Chinese cabbage under greenhouse cultivation.

Effects of Waste Nutrient Solution on Growth of Chinese Cabbage (Brassica campestris L.) in Korea

  • Choi, Bong-Su;Lee, Sang-Soo;Ok, Yong-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.2
    • /
    • pp.125-131
    • /
    • 2011
  • BACKGROUND: Reuse of waste nutrient solution for the cultivation of crops could lead to considerable conservation of water resources, plant nutrients, and water quality. Therefore, this study was conducted to evaluate the potential for reducing the use of chemical fertilizer in Chinese cabbage cultivation via the reuse of waste nutrient solution as an alternative irrigation resource. METHODS AND RESULTS: The nutrients supplied in the waste nutrient solution consisted of 1474.5, 1285.1, 991.6, and 872.6 mg/L for $K+$, ${NO_3}^-$, $Ca^{2+}$ and ${SO_4}^{2-}$, respectively. At 56 days after transplanting (DAT), the leaf length of Chinese cabbage plants irrigated with the waste nutrient solution treatment was significantly higher than that of plants irrigated using a conventional groundwater treatment. Additionally, the leaf width, fresh weight and dry weight of the plants irrigated with the waste nutrient solution were similar or greater than that of plants irrigated with a conventional treatment. Furthermore, the growth of plants treated with the waste nutrient solution +25% fertilizer was the highest among all tested treatments. CONCLUSION(s): These results indicate that the waste nutrient solution can be used as an alternate water resource for crop cultivation. In addition, it can contribute to reduce the fertilizer and to obtain the higher crop yield of Chinese cabbage.